Safe Zero-cost
Coercions for Haskell

Joachim Breitner Richard Eisenberg
Karlsruhe Institute of Technology University of Pennsylvania
breitner@kit.edu eir@cis.upenn.edu
Simon Peyton Jones Stephanie Weirich
Microsoft Research University of Pennsylvania
simonpj@microsoft.com sweirich@cis.upenn.edu

PENN

v

M"ﬁiosoft' I'd‘.

Tuesday, 2 September, 2014
ICFP, GOteborg, Sweden

mailto:breitner@kit.edu
mailto:breitner@kit.edu
mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu

Abstraction can be a drag...

newtype HTML = MkH String
-- MkH 1s not exported
-- safety increase over using String
-- “no runtime overhead”

string :: HTML — String
string (MkH s) = s

stringlList :: [HTML]| — [String]
stringlList hs = map string hs
-- this no-op takes linear time!

Outline, in brief

l. How we make *“zero-cost”
abstractions cost nothing,
retaining type safety

Il. Consequences of our design &
other practicalities

A new equivalence relation: =

coerce :: a=b —=>a — b

Wewant:(a = b)=([a] = [b])

So: Use a type class!

class a = b
instance a = b = [a] = [b]

(=) is spelled Coercible in GHC 7.8

coerce must be free!

coerce :: a=b —=a — b
coerce X =

Instances of (=) must be sound!

Instances of (=)

Reflexivity:
instance a = a

No symmetry or transitivity:
we need syntax-directed solving

Symmetry and transitivity are admissible

Instances of (=)

u
From newtype declarations: n)Wrapp,-ng,
I
newtype HTML = MkH String = = 'Stances

instance a = String = a = HTML
instance String = b = HTML = b

Assume newtype ValidHTML = MkV HTML

Can derive (String = ValidHTML):
String = String
— String = HTML
= String = ValidHTML

Instances of (=)

((/I.f.
From data declarations: t'”ginstan
Ce”’
data Maybe a = Nothing | Just a —©

instance a = b = Maybe a = Maybe b
Lifting instances also made for newtypes

Can derive (Maybe HTML = Maybe String):

String = String
— HTML = String
— Maybe HTML = Maybe String

But that’s too permissive!

type family F a
type instance F String = Int
type instance F HTML = Bool — Bool

newtype UhOh a = MkUO (F a)
Can derive (Int = Bool — Bool): (!}

...~ UhOh String = UhOh HTML lifting
= .= F String = F HTML unwrapping
= Int = Bool — Bool

1 Y -
\. \ \ \\\\"\ \\..‘\ \\ ‘ \\\

' : y NN ANRE \\\\\\\

R —

- ..

| —

SR ST SSNANSRITE T s vwnwres

RS N NN ALY
RSSO NN L

'lllo’llz /////

'\lllllllll//’ ///
‘o‘.",/",'/'/ »” ///{// /

A

b

image: Jim Urquhart/Reuters

A tale of two equalities

nominal representational
compile time run time

equal in Haskell code equal to code generator

automatic conversion manual conversion
finer coarser
(X ~y) (x = y)

—
(X ~ y) F (X = y)

A tale of two equalities

Type families, GADTSs, class
instances, etc. can distinguish a
newtype and its representation.

Int
Bool — Bool

type instance F String
type instance F HTML

\\\ Does not
respect (=)

Roles

We must differentiate between

data Maybe a newtype UhOh a
= Nothing = MkUO (F a)
| Just a

Answer: assign roles to type parameters

Adaptation of ideas in previous work [1]:
 Simpler -- doesn’t require a new kind system
* Less expressive -- some higher-order types excluded
» More flexible -- roles aren’t in kinds
[1]: Weirich, Vytiniotis, Peyton Jones, Zdancewic.

Generative type abstraction and type-level
computation. POPL ’11

Roles

Three roles: examples:

* Nominal (n) UhOh

» Representational (r) Maybe, [], Either
* Phantom (p) data Proxy a = P

instance (UhOh n) = (UhOh n) -- redundant
instance r1 = r, = (Maybe ri1) = (Maybe r;)
instance Proxy pi1 = Proxy p:

* N parameter is unchanged
* 1 and r> must be representationally equal
* no relationship between p1 and p»

Role Inference

Goal: Determine the most permissive
yet safe role for type parameters

P>R>N
(>) = “more permissive than”

Algorithm: Find fixed point of propagating
role restrictions

Nominal roots: type families, (~), GADTs, ...
Representational roots: (—), ...

Type Safety

Proved progress and
preservation using GHC’s
typed intermediate
language, System FC.

Discussion

Application

instance Num Int where ...
nhewtype Age = MkAge Int
deriving Num

(

Num Age instance built from coerced
methods of Num Int instance.

GeneralizedNewtypeDeriving (GND)

is a long-standing feature of GHC, now
safely reimplemented in terms of coerce.

Abstraction

Q: IfHTML = String, what happens to safety?

A: Allow newtype (un)wrapping instances
only when constructor is in scope

Abstraction

 AMap k v maps keys k to values v
» Keys are ordered by k’s Ord instance

» Map is abstract -- its constructor is not in scope

N

Q: Should Map Int String
A: Yes!

Map Int HTML?

Q: Should Map String Int = Map HTML Int?
A: No - What if String’s Ordis not HTML’s Ord?

Abstraction

data Map k v = MkMap [(k,v)]

The programmer should specify the roles:

type role Map nominal representational

The Default Debate

Preserve abstraction! Make roles
default to nominal!

Be backward compatible! Allow
GeneralizedNewtypeDeriving!

GHC 7.8 infers the most permissive roles.

Roles in the Wild

* Roles were included in the GHC dev build
on Aug. 2, 2013.

* On Sept. 30, Bryan O’Sullivan did a study,
trying to compile all of Hackage'

* 3,234 packages compiled with GHC 7.6.3

* Only 4 failed due to compile due to role
restrictions around GND

» 3 of these 4 were legitimate bugs
* 1 was due to conservativity of roles

' See http://www.haskell.org/pipermail/ghc-devs/2013-September/002693.html

http://www.haskell.org/pipermail/ghc-
http://www.haskell.org/pipermail/ghc-

Trouble on the Horizon?

Proposed new Monad class:
class (...) = Monad m where

join :: forall a. m (ma) — m a

Imagine
newtype Restr m a = MKR (m a)
deriving Monad

Given: Restr m a = m a
Wanted: Restr m (Restr m a) = m (m a)

Trouble on the Horizon?

Given: Restr m a = m a

Wanted: Restr m (Restr m a) = m (m a)

f

m (Restr m a) = m (m a)

I

2277277

m’s parameter’s role might
be nominal, so we’re stuck!

Trouble on the Horizon?

Proposed solution: Track variable-
parameter roles via typeclasses.

See https://ghc.haskell.org/trac/ghc/wiki/Roles2

Added Flexibility

Roles do not appear in a variable’s kind.

class Functor (f :: x — %) where ...

instance Functor Maybe where ...

instance Functor UhOh where ...

This would not work with the
previous formulation of roles.

Conclusion

 Allowed for an efficient, safe way to make zero-cost
abstractions truly free.

o Straightforward interface: (=)/Coercible

» Implemented and released in GHC 7.8

» Explored interaction between type abstraction and
other type features; these issues exist in other
languages too (e.g. OCaml’s variance annotations)

Safe Zero-cost
Coercions for Haskell

Joachim Breitner Richard Eisenberg
Karlsruhe Institute of Technology University of Pennsylvania
breitner@kit.edu eir@cis.upenn.edu
Simon Peyton Jones Stephanie Weirich
Microsoft Research University of Pennsylvania
simonpj@microsoft.com sweirich@cis.upenn.edu

PENN

v

M"ﬁiosoft' I'd‘.

Tuesday, 2 September, 2014
ICFP, GOteborg, Sweden

mailto:breitner@kit.edu
mailto:breitner@kit.edu
mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu

