
Opposite page: Mars Rover.

Photo courtesy of NASA/JPL-Caltech

205

Artificial Intelligence

David: Martin is Mommy and Henry's real son. After I find the Blue Fairy then I can go
home. Mommy will love a real boy. The Blue Fairy will make me into one.
Gigolo Joe: Is Blue Fairy Mecha, Orga, man or woman?
David: Woman.
Gigolo Joe: Woman? I know women! They sometimes ask for me by name. I know all
about women. About as much as there is to know. No two are ever alike, And after
they've met me, no two are ever the same. And I know where most of them can be
found.
David: Where?
Gigolo Joe: Rouge City. Across the Delaware.

Dialog between two Artificial Intelligence entities: Gigolo Joe (played by Jude Law) and
David (played by Haley Joel Osment) in the movie, Artificial Intelligence, Directed by

Steven Speilberg, Warner Bros., 2001.

Opposite page: A.I. Artificial Intelligence

From the movie poster. Warner Bros., 2001.

Chapter 10

206

The Question of Intelligence

The quest for the understanding of intelligence probably forms the oldest and yet
to be fully understood human inquiry. With the advent of computers and robots,
the question of whether robots and computers can be as intelligent as humans has
driven the scientific pursuits in the field of Artificial Intelligence (AI). Whether a
computer can be intelligent was lucidly discussed by Professor Alan Turing in
1950. To illustrate the issues underlying machine intelligence, Turing devised a
thought experiment in the form of an imitation game. It is played with three
people, a man, a woman, and an interrogator. They are all in separate rooms and
interact with each other by typing text into a computer (much like the way people
interact with each other over IM or other instant messaging services). The
interrogator's task is to identify which person is a man (or woman). To make the
game interesting, either player can try and be deceptive in giving their answers.
Turing argues that a computer should be considered intelligent if it could be
made to play the role of either player in the game without giving itself away.
This test of intelligence has come to be called the Turing Test and has generated
much activity in the community of AI researchers (see Exercises). The dialog
shown above, from the movie Artificial Intelligence, depicts an aspect of the test
of intelligence designed by Alan Turing. Based on the exchange between Gigolo
Joe and David, can you conclude that they are both intelligent? Human?

After over five decades of AI research the field has matured and evolved in many
ways. For one, the focus on intelligence is no longer limited to humans: insects
and other forms of animals with varying degrees and kinds of intelligence have
been the subject of study within AI. There has also been a fruitful exchange of
ideas and models between AI scientists, biologists, psychologists, cognitive
scientists, neuroscientists, linguists and philosophers. You saw examples of such
an influence in the models of Braitenberg vehicles introduced earlier. Given the
diversity of researchers involved in AI there has also been an evolution of what
AI itself is really about. We will return to this later in the chapter. First, we will
give you a few examples of models that could be considered intelligent that are
commonly used by many AI scientists.

Language Understanding

One aspect of intelligence acknowledged by many people is the use of language.
People communicate with each other using a language. There are many (several
thousand) languages in use on this planet. Such languages are called natural
languages. Many interesting theories have been put forward about the origins of
language itself. An interesting question to consider is: Can people communicate

Artificial Intelligence

207

with computers using human (natural) languages? In other words, can a
computer be made to understand language? Think about that for a few moments.

To make the question of language understanding more concrete, think of your
Scribbler robot. So far, you have controlled the behavior of the robot by writing
Python programs for it. Is it possible to make the Scribbler understand English so
that you could interact with it? What would an interaction with Scribbler look
like? Obviously, you would not expect to have a conversation with the Scribbler
about the dinner you ate last night. However, it would probably make sense to
ask it to move in a certain way. Or to ask whether it is seeing an obstacle ahead.

Do this: Write down a series of short 1-word commands like: forward, right,
left, stop, etc. Create a vocabulary of commands and then write a program that
inputs a command at a time interprets it and makes the Scribbler carry it out. For
example:

You: forward
Scribbler: starts moving forward…
You: right
Scribbler starts turning right…
You: stop
…

Experiment with the behavior of the robot based on these commands and think
about the proper interpretation that may make its behavior more natural.

You will find yourself making several assumptions about interpretation of even
the simplest commands in the exercise above. For example, what happens when
after you command the Scribbler to move forward, you ask it to turn right?
Should the Scribbler stop going forward or should it stop and then start turning?

Decisions like these also give deep insights into our own abilities of
understanding language. You can also see that, as in the case of visual
perception, processing of language (or text) begins at a very primitive level:
words. If the input is speech, the basic units are electrical signals, perhaps
coming from a microphone. Just like processing individual pixels to try and
understand the contents of an image, one has to start at a low level of
representation for beginning to understand language.

Researchers working in the field of computational linguistics (or natural
language understanding) have proposed many theories of language processing
that can form the basis of a computational model for a Scribbler to understand a
small subset of the English language. In this section, we will examine one such

Chapter 10

208

model which is based on the processing of syntax and semantics of language
interaction. Imagine, interacting with the Scribbler using the following set of
sentences:

You: do you see a wall?
Scribbler: No

You: Beep whenever you see a wall.
You: Turn right whenever you see a wall to your left.
You: Turn left whenever you see a wall to your right.
You: Move for 60 seconds.

[The Scribbler robot moves around for 60 seconds turning whenever
it sees a wall. It also beeps whenever it sees a wall.]

Earlier, you have written Python programs that perform similar behaviors.
However, now imagine interacting with the robot in the fashion described. From
a physical perspective, imagine that you are sitting in front of a computer, and
you have a Bluetooth connection to the robot. The first question then becomes:
Are you actually speaking or typing the above commands? From an AI
perspective, both modalities are possible: You could be sitting in front of the
computer and speaking into a microphone; or you could be typing those
commands on the keyboard. In the first instance, you would need a speech
understanding capability. Today, you can obtain software (commercial as well as
freeware) that will enable you to do this. Some of these systems are capable of
distinguishing accents, intonations, male or female voices etc. Indeed, speech
and spoken language understanding is a fascinating field of study that combines
knowledge from linguistics, signal processing, phonology, etc.

You can imagine that the end result of speaking into a computer is a piece of text
that transcribes what you said. So, the question posed to the Scribbler above: Do
you see a wall? will have to be processed and then transcribed into text. Once
you have the text, that is, a string “Do you see a wall?” it can be further
processed or analyzed to understand the meaning or the content of the text. The
field of computational linguistics provides many ways of syntactic parsing,
analyzing, and extracting meaning from texts. Researchers in AI itself have
developed ways of representing knowledge in a computer using symbolic
notations (e.g. formal logic). In the end, the analysis of the text will result in a
getIR() or getObstacle() command to the Scribbler robot and will produce
the response shown above.

Our goal of bringing up the above scenario here is to illustrate to you various
dimensions of AI research that can involve people from many different
disciplines. These days, it is entirely possible even for you to design and build

Artificial Intelligence

209

computer programs or systems that are capable of interacting with robots using
language.

Game Playing

In the early history of AI, scientists posed several challenging tasks which if
performed by computers could be used as a way of demonstrating the feasibility
of machine intelligence. It was common practice to think of games in this realm.
For example, if a computer could play a game, like chess, or checkers, at the
same level or better than humans we would be convinced into thinking that it
was indeed feasible to think of a computer as a possible candidate for machine
intelligence. Some of the earliest demonstrations of AI research included
attempts at computer models for playing various games. Checkers and chess
seemed to be the most popular choices, but researchers have indulged themselves
into examining computer models of many popular games: Poker, Bridge,

Scrabble, Backgammon, etc.

In many games, it is now possible for computer models to play at the highest
levels of human performance. In Chess, for example, even though the earliest
programs handily beat novices in the 1960's, it wasn't until 1996 when an IBM
computer Chess program, named Deep Blue, beat the world champion Gary
Kasparov at a tournament-level game, though Kasparov did manage to win the
match 4-2. A year later, in New York, Deep Blue beat Kasparov in a 6 game
match representing the very first time a computer defeated the best human player
in a classical style game of Chess. While these accomplishments are worthy of
praise it also now clear that the quest for machine intelligence is not necessarily
answered by computer game playing. This has resulted in much progress in game
playing systems and game playing technology which is now a multi-billion dollar
industry.

Two-person zero-sum games: Chess, Tic Tac Toe, Konane

Chapter 10

210

It turns out that in many Chess-like games the general strategy for a computer to
play the game is very similar. Such games are classified as two-person zero-sum
games: two people/computers play against each other and the result of the game
is either a win for one player and loss for the other, or it is a draw. In many such
games, the basic strategy for making the next move is simple: look at all the
possible moves I have and for each of them all the possible moves the other
player might have and so on until the very end. Then, trace back from wins (or
draws) and make the next move based on those desirable outcomes. You can see
this even in simple games like Tic Tac Toe where it is easy to mentally look
ahead future moves and then make more informed decisions about what to do
next. The best way to understand this is to actually write a program that plays the
game.

Tic Tac Toe

Also known as Noughts and Crosses or Hugs and Kisses, Tic Tac Toe is a
popular children’s game (see description on right). We will develop a program
that can be used to play this game against a person. Almost any board game can
be programmed using the basic loop shown below:

def play():
 # Initialize board
 board = makeBoard()

 # set who moves first/next: X always moves first
 player = 'X'

 # Display the initial board
 display(board)

 # The game loop
 while (not gameOver(board)):
 move(board, player)
 display(board)
 player = opponent(player)

 # game over, show outcome
 winningPiece = winner(board)

 if winningPiece != 'Tie':
 print winningPiece, "won."
 else:
 print "It is a tie."

Tic Tac Toe Rules

Two players, O and X, take

turns filling the squares in a

3×3 grid. X always going first.

The player who succeeds in

placing three pieces in a

horizontal, vertical or diagonal

row wins the game.

Artificial Intelligence

211

The function above can be used to play a round of any two-person board game.
The variable player is the player (or piece) whose move is next. We are already
using the Tic Tac Toe piece ‘X’ in the function above. Six basic functions
(shown highlighted above) make up the basic building blocks of the game. For
Tic Tac Toe, they can be defined as:

1. makeBoard(): Returns a fresh new board representing the start of the
game. For Tic Tac Toe, this function will return an empty board
representing the nine squares.

2. displayBoard(board): Displays the board on the screen for the user to
see. The display can be as simple or elaborate as you wish. It is good to
start with the easiest one you can write. Later you can make it fancier.

3. opponent(player): Returns the opponent of the current player/piece. In
Tic Tac Toe, if the player is X, it will return an O, and vice versa.

4. move(board, player): Updates the board by making one move for the
player. If the player is the user, it will input the move from the user. If the
player is the computer, it will decide how to make the best move. This is
where the smarts will come in.

5. gameOver(board): Returns True if there are no more moves left to be
made, False otherwise.

6. winner(board): Examines the board and returns the winning piece or
that the game is not yet over, or that it is a tie. In Tic Tac Toe, it will
return either an X, O, a blank (representing game is not over yet), or a
TIE.

We will need a few more functions to complete the game but these six form the
basic core. We will write them first.

The game itself consists of nine squares that start out being empty. Players
choose a game piece: an ‘X’ or an ‘O’. We will assume that ‘X’ always goes
first. The first thing to do then is to design a representation of the game board.
We will use the following simple representation:

board = [' ',' ',' ',' ',' ',' ',' ',' ',' ']

This is a list of 9 1-character strings. Note that we are using this linear
representation of the board instead of a 2-dimensional one. However, as you will
see, this representation makes it easier to do many manipulations for the game.
During play, the board can be displayed in its natural format. Below, we show
two functions: one creates a fresh new board each time it is called; and one
displays it:

Chapter 10

212

def makeBoard():
 # A 3x3 board is represented as a list of 9 elements.
 # We will use the following numbering to locate a square
 # 0 | 1 | 2
 # ---|---|---
 # 3 | 4 | 5
 # ---|---|---
 # 6 | 7 | 8

 return [' ',' ',' ',' ',' ',' ',' ',' ',' ']

def display(board):
 for i in range(0, 9, 3):
 if i > 0:
 print '---|---|---'
 print " %c | %c | %c "%(board[i],board[i+1],board[i+2])
 print

One advantage of writing the display function as shown is that it gives us a quick
way of creating and displaying the game. Later, when you are done, you can
write a fancier version that displays the game graphically (see Exercises). With
the above functions, we can easily create a fresh new board and display it as
follows:

board = makeBoard()
display(board)

To determine the opponent of a given piece is simple enough:

def opponent(player):
 if player == "X":
 return "O"
 else:
 return "X"

Next, we have to write the function move. It first determines whose move it is. If
it is the user’s move, it will input the move from the user. Otherwise, it will
determine the best move for the computer. Then it will actually make the move.
As a first design, we will let move make a random choice out of the possible
moves for the computer. Later, we will make a more informed decision. The
choice function is available in the random library module:

from random import choice
You = ‘X’
Me = ‘O’

Artificial Intelligence

213

def move(board, player):
 if player == You: # user's move?
 square = input("Enter your move: ") – 1
 else: # my turn
 # player is the computer, make a random choice
 square = choice(possibleMoves(board, player))

 # place player's piece on the chosen square
 applyMove(board, player, square)

We have set the global variables You and Me to specific pieces. This is a
simplification for now. Later you can come back and rewrite them so that for
each game, the user gets to select their piece. In Tic Tac Toe, X always moves
first. So by making the user’s piece X, we have made an assumption that X
always goes first. Again, later we can come back and modify this (See
Exercises). Also notice that we are not doing any error checking in user input to
ensure that a legal move was input (see exercises).

The user inputs their move by entering a number from 1..9 where the square
numbering is as shown below. This is slightly different from our internal
numbering of squares and more natural for people. In the move function above,
we subtract 1 from the input number so it maps to the proper square in our
internal scheme.

1	2	3
 2 | 5 | 6
 ---|---|---
 7 | 8 | 9

Again, we have simplified the interface for now. The exercises suggest how to
improve on this design.

The move function defined above requires two additional functions (shown
highlighted). These are also core functions in any board-based game and are
described below:

7. possibleMoves(board, player): Returns a list of possible moves for
the given player.

8. applyMove(board, player, square): Given a specific square and a
player/piece, this function actually applies the move on the board. In Tic
Tac Toe all one has to do is actually place the piece in the given square.
In other games, like Chess or Checkers, there may be pieces that get
removed.

Chapter 10

214

In Tic Tac Toe all empty squares are possible places where a player can move.
Below, we write a function that, given a board, returns a list of all the possible
locations where a piece can be placed:

def possibleMoves(board):
 return [i for i in range(9) if board[i] == ' ']

We are using list comprehensions (a Python feature) above to create the list of
possible moves. You may be more comfortable writing the following version
instead:

def possibleMoves(board):
 moves = []
 for i in range(9):
 if board[i] == ' ':
 moves.append(i)
 return moves

To complete the game playing program, we need to write two more functions
defined above. The winner function examines the board and determines who
won. It returns the winning piece (an 'X', 'O') or the string 'Tie'. In case
the game is not yet over, it returns a ' '. Below, we first define all the winning
positions in Tic Tac Toe, based on our board representation. Next, we define the
function itself to examine the board.

These square triples represent wins (three in a row).

WINS = [[0, 1, 2],[3, 4, 5],[6, 7, 8], # the rows
 [0, 3, 6],[1, 4, 7],[2, 5, 8], # the columns
 [0, 4, 8],[2, 4, 6]] # diagonals

def winner(board):
 for win in WINS:
 posWinner = board[win[0]]
 if (posWinner != ' ' and
 posWinner == board[win[1]] and
 posWinner == board[win[2]]):
 return posWinner

 # No winner yet, are there empty squares left?
 for i in range(9):
 if board[i] == ' ':
 return ' '

 # The board is full and no one has three in a row
 return 'Tie'

Artificial Intelligence

215

Last, the gameOver function can be written either by relying on the fact that
winner retruns a ' ' when the game is not yet over. Alternately, we can write it
using possibleMoves as follows:

def gameOver(board):
 return len(possibleMoves(board)) == 0

Now, we have all the ingredients for a program to play a game of Tic Tac Toe.
The version above is simplified in many ways, and yet it captures the essential
elements of playing a round of Tic Tac Toe.

Do This: Implement the program above and play a few rounds of Tic Tac Toe.
When you play against the computer, you are anticipating possible moves down
the road and then playing your own moves with those in mind.

You probably had no problems beating the computer at the game. That is
because the computer is just picking its moves by random from a set of possible
moves:

player is the computer, make a random choice
square = choice(possibleMoves(board, player))

This is the line in move where we can put some intelligence into the program.
However, the basic question that needs to be asked is: which of the possible
moves is the best one for me? Think about this for yourself a little. In Tic Tac
Toe, you play in two modes: defensively so as not to lose after the next move, or
offensively to try and win. If a win is imminent for you, you will of course make
that move, but if it isn’t (and neither is a loss) how do you select your move? We
will try and generalize this idea next in a way that will also be applicable to other
board games.

Let us delegate the responsibility of finding the best move to a function:
bestMove that will return the best move from among a set of possible moves.
That is, we can change the line in move as follows:

player is the computer, make a random choice
square = bestMove(board, player, possibleMoves(board, player))

If bestMove were to make a random choice (as above) we could write it as:

def bestMove(board, player, moves):
 return choice(moves)

Chapter 10

216

Imagine that you decided to go watch two players playing a game of Chess (or
Tic Tac Toe). However, you get there in the middle of the game. You walk into
the room, look at the board, and are able to evaluate how each player is doing
without knowing anything about how the board came to be. For example, take a
look at the Tic Tac Toe boards:

 X | O | X O | X | X X | O | X X | |
 ---|---|--- ---|---|--- ---|---|--- ---|---|---
 | O | | | O | X | O | |
 ---|---|--- ---|---|--- ---|---|--- ---|---|---
 O | X | X X | | O | X | | |

 1 2 3 4

In all the cases above, the computer is playing O and it is O’s turn next. Examine
each board and think about what the best move for O would be.

In case 1, the computer has to play defensively and place an O in square 6 to
avoid losing the game. In case 2, it can be on the offensive and recognize that it
will win the game by placing an O in square 5. In case 3, it has to play to avoid
losing. In the last case, the board is wide open. Of the eight possible choices, is
there a best move? From experience, you are probably going to place the O in the
center square (square 5). Why? Let us elaborate this by looking ahead (see
Figure on next page).

Think about how we could quantify each of the above board positions with
respect to O’s chances of winning. For each board, count the number of possible
winning positions still remaining for O and compare those for X. For example, in
the first board, O has 5 possible winning positions, and X has 6. We could say
that O is 5 – 6 = -1 has one less possibility than X. If you did this for the second
and the third boards, you will see that both X and O are even in the number of
possible remaining winning positions (5 each). However, in the fourth case, O
has 5 possible winning positions remaining, and X has only 4. Try and work out
the remaining board positions to confirm the scores shown above. Clearly, you
can see that placing O in square 5 is the best of all the possibilities. Try and
elaborate the 5 possible moves for O in case 2 above. You will find that one of
the five leads to a win for O. Similarly, when you elaborate the two options for O
in case 1, you will notice that one leads to a tie and the other to a loss for O. We
can capture all these situations in a function that takes a look at the board and
returns a number representing a score in favor of O: the higher the value
returned, the more desirable the board.

Artificial Intelligence

217

ሻ݀ݎܽ݋ሺܾ݁ݐܽݑ݈ܽݒ݁ ൌ ቐ

∞, ݎ݁ݐݑ݌݉݋ܿ ݎ݋݂ ݊݅ݓ ܽ ݏ݅ ݀ݎܽ݋ܾ ݂݅
െ∞, ݎ݁ݐݑ݌݉݋ܿ ݎ݋݂ ݏݏ݋݈ ܽ ݏ݅ ݀ݎܽ݋ܾ ݂݅

ሻݎ݁ݐݑ݌݉݋ሺܿݏܹ݊݅݊݁݌݋ െ ,ሻݎ݁ݏݑሺݏܹ݊݅݊݁݌݋ ݓ/݋

That is, a win for the computer receives a high score, a loss receives a low score.
Otherwise, it is the difference in the number of open wins remaining for each.
We can capture this in Python as follows:

INFINITY = 10
def evaluate(board):
 # if board is a win for player, return INFINITY
 piece = winner(board)
 if piece == Me:
 return INFINITY
 elif piece == You:
 return –INFINITY
 else:
 return openWins(board,Me) - openWins(board,You)

We define INFINITY as 10, a large enough number relative to the other values
that might be returned by evaluate. openWins looks at each winning triple on
the board and counts the number of openings for the given player.

Chapter 10

218

def openWins(board, player):
 possWins = 0
 for position in WINS:
 n = 0
 for i in range(3):
 if (board[position[i]] == player) or
 (board[position[i]] == ' '):
 n += 1
 if n == 3: possWins += 1
 return possWins

Do This: Implement the two functions above and then test them. Create several
board positions (use the ones from examples above) and confirm that the board is
being evaluated to the correct values.

Next, we can rewrite bestMove to take advantage of evaluate:

def bestMove(board, player, moves):
 scores = []
 for move in moves:
 b = copy(board)
 applyMove(b, player, move)
 scores.append(evaluate(b))

 return moves[scores.index(max(scores))]

Notice how it takes each possible move, creates a new board with that move, and
then evaluates the score of the resulting board. Finally, it returns the move with
the highest score as the best move. Modify your program from above to use this
version of bestMove and play the game several times. You will notice that there
is a significant improvement in the computer’s playing ability. Can you measure
it in some way? (See Exercises).

The above rewrite of bestMove will make the program play significantly better
but there is still more room for improvement. In most board games good players
are able to mentally picture the game several moves ahead. In many games, like
Chess, certain recognizable situations lead to well determined outcomes and so a
great part of playing a successful game also relies on the ability to recognize
those situations.

Looking ahead several moves in a systematic manner is something computers are
quite capable of doing and hence anyone (even you!) can turn them into fairly
good players. The challenge lies in the number of moves you can look ahead and
in the limited capacity, if time to make the next move is limited, how to choose
among the best available options? These decisions lend interesting character to

Artificial Intelligence

219

computer game programs and continue to be a constant source of fascination for
many people. Lets us look at how your Tic Tac Toe program can easily look at
all the possible moves all the way to the end of game in determining its next
move (which, in most situations leads to a draw, given the simplicity of the
game).

When you look ahead a few moves, you take into account that your opponent is
going to try and beat you at every move. Your program, in trying to select the
best move, can look ahead at the opponent’s moves and take that into
consideration when choosing its best move. In fact, it can go further, all the way
to the end. The evaluate function we wrote above can be used effectively to
evaluate future board situations by assuming that when it is the computer’s
move, it will always try to pick the move that promises the highest score in the
future. However, when it examines the opponent’s moves, it has to assume that
the opponent is going to make the move that is worst for the computer. In other
words, when looking ahead, the computer is going to maximize its possible score
while the opponent is going to minimize the computer’s chances to win. This can
be captured in the following:

def lookahead(board, player, MAX, level):

 moves = possibleMoves(board)
 if level <= 0 or len(moves)==0: # limit of look ahead
 return evaluate(board)

 if MAX: # computer’s move
 V = -INFINITY
 for m in moves:
 b = copy(board)
 b[m] = player
 V =max(V,lookahead(b,opponent(player),1-MAX,level-1))
 else: # opponent’s move
 V = INFINITY
 for m in moves:
 b = copy(board)
 b[m] = player
 V =min(V,lookahead(b,opponent(player),1-MAX,level-1))
 return V

The lookahead function defined above takes the current board, the player whose
turn it is, whether the player is the computer (one trying to maximize its
outcome) or the computer (one trying to minimize the computer’s outcomes),
and the levels still to look ahead, and computes a score based on examining all
the moves going forward to the limit of look ahead. In the above function when
MAX is 1 it represents the computer and 0 represents its opponent. Thus,

Chapter 10

220

depending on the value of MAX, the evaluation is minimized or maximized
accordingly. Each time it looks ahead further, the level is reduced by 1. The final
value returned by lookahead can be used by bestMove as follows:

LEVEL = 9
def bestMove(board, player, moves):

 scores = []
 for m in moves:
 b = copy(board)
 b[m] = player
 scores.append(lookahead(b,opponent(player),0,LEVEL-1)

 return moves[scores.index(max(scores))]

As before, the move with the highest value is considered the best move. We have
set the value of LEVEL above at 9 (i.e. look 9 moves ahead!) implying that each
time it will look as far as the end of the game before making the decision. There
can only be a maximum of 9 moves in a Tic Tac Toe game. The quality of the
computer’s decision maker can in fact be adjusted by lowering the value of
LEVEL. At LEVEL = 1, it will be equivalent to the version we wrote earlier that
only used the evaluate function.

How many levels ahead one looks in a game like this can depend on the game
itself. Can you guess how many board situations the computer will have to look
at in doing a look ahead at LEVEL = 9 after the user’s first move? It will be
40,320 different board situations! Why? Additionally, by the time it is the
computer’s second move, it will only need to look at 720 board positions. This is
because, in Tic Tac Toe, as the board gets filled, there are fewer possible moves
remaining. In fact, by the time it is the computer’s third move, it only needs to
look at a total of 24 boards. And, if the computer makes it to its fourth move, it
will only have to look at two possible moves. Thus, an exhaustive search for all
the possible board positions until the end of the game each time the computer has
to make a move it will be examining a total of 41,066 board positions. However,
if you consider a typical game of Chess, in which each player makes an average
of 32 moves and the number of feasible moves available at any time averages
around 10, you would soon realize that the computer would have to examine
something of the order of 10଺ହ board positions before making a move! This,
even for the fastest computers available today, will take several gazillion years!
More on that later. But, to play an interesting two-person zero-sum game, it is
not essential to look so far ahead. You can vary the amount of look ahead by
adjusting the value of LEVEL in such programs.

Artificial Intelligence

221

Do This: Implement lookahead as described above and compare how well the
computer plays against you. Try and vary the levels from 1, 2, …, to see if there
is any improvement in the computer’s play. Would you consider this program
intelligent?

The exercises at the end of the chapter will guide you in transforming the above
program into a more robust and even efficient game playing program for Tic Tac
Toe. However, study the program structure carefully and you will be able to use
the same strategy, including much of the core of the program, to play many other
two-person board games.

Smarter Paper Scissors Rock

In Chapter 7, you saw an example of a program that played the game of Paper
Scissors Rock against a human user. In that version, the program’s choice
strategy for picking an object was completely random. We reproduce that section
of the program here:

…
items = ["Paper", "Scissors", "Rock"]
…
Computer makes a selection
myChoice = items[randint(0, 2)]
…

In the above program segment, myChoice is the program’s choice. As you can
see, the program uses a random number to select its object. That is, the likelihood
of picking any of the three objects is 0.33 or 33%. The game and winning
strategies for this game have been extensively studied. Some strategies rely on
detecting patterns in human choice behavior. Even though we may not realize it
there are patterns in our seemingly random behavior. Computer programs can
easily track such behavior patterns by keeping long histories of player’s choices,
detect them, and then design strategies to beat those patterns. This has been
shown to work quite effectively. It involves recording player’s choices and
searching through them. Another strategy is to study human choice statistics in
this game. Before we present you with some data, do the exercise suggested
below.

Do This: Play the game against a few people, Play several dozen rounds. Record
the choices made by each player (just write a P/S/R in two columns). Once done,
compute the percentages of each object picked. Now read on.

Chapter 10

222

It turns out that most casual human players are more prone towards picking Rock
than Paper or Scissors. In fact, various analyses suggest that 36% of the time
people tend to pick Rock, 30% Paper, and 34% Scissors. This suggests that RPS
is not merely a game of chance there is room for some strategies at winning.
Believe it or not, there are world championships of RPS held each year. Even a
simple game like this has numerous possibilities. We can use some of this
information, for instance, to make our program smarter or better adept at playing
the game. All we have to do is instead of using a fair 33% chance of selecting
each object we can skew the chances of selection based on people’s preferences.
Thus, if 36% of the time people tend to pick Rock, it would be better for our
program to pick Paper 36% of the time since Paper beats Rock. Similarly, our
program should pick Scissors 30% of the time to match the chance of beating
Paper, and pick Rock 34% of the time to match the chances of beating Paper. We
can bias the random number generator using these percentages as follows:

First generate a random number in the range 0..99
If the number generated is in the range 0..29, select Scissors (30%)
If the number generated is in the range 30..63, select Rock (34%)
If the number generated is in the range 64..99, select Paper (36%)

The above strategy of biasing the random selection can be implemented as
follows:

def mySelection():

 # First generate a random number in the range 0..99
 n = randrange(0, 100)

 # If the n is in range 0..29, select Scissors
 if n <= 29:
 return "Scissors"
 elif n <= 63:
 # if n in range 30..63, select Rock
 return "Rock"
 else:
 return "Paper"

Do This: Modify your RPS program from Chapter 7 to use this strategy. Play the
game several times. Does it perform much better that the previous version? You
will have to test this by collecting data from both versions against several people
(make sure they are novices!).

Another strategy that people use is based upon the following observation:

Artificial Intelligence

223

After many rounds, people tend to make the move that would have beaten their
own previous move.

Say a player picks Paper. Their next pick will be Scissors. A computer program
or a player playing against this player should then pick Rock to beat Scissors.
Note that the relationship between the choices is cyclical. Paper beats Rock,
Rock beats Scissors, and Scissors beat Paper. Therefore, since the player’s
previous move was Paper, your program can pick Rock in anticipation of the
player’s pick of Scissors. Try to think over this carefully and make sure your
head is not spinning by the end of it. If a player can spot this they can use this as
a winning strategy. We will leave the implementation of this strategy as an
exercise. The exercises also suggest another strategy.

The point of the above examples is that using strategies in your programs you
can make your programs smarter or more intelligent. Deliberately, we have
started to use the term intelligence a little more loosely than what Alan Turing
implied in his famous essay. Many people would argue that these programs are
not intelligent in the ultimate sense of the word. We agree. However, writing
smarter programs is a natural activity. If the programs incorporate strategies or
heuristics that people would use when they are doing the same activity, then the
programs have some form of artificial intelligence in them. Even if the strategy
used by the program is nothing like what people would use, but it would make
the program smarter or better, we would call it artificial intelligence. Many
people would disagree with this latter claim. To some, the quest for figuring out
intelligence is limited to the understanding of intelligence in humans (and other
animals). In AI both points of view are quite prevalent and make for some
passionate debates among scholars.

Discussion

The very idea of considering a computer as an intelligent device has its
foundations in the general purpose nature of computers. By changing the
program the same computer can be made to behave in many different ways. At
the core of it a computer is just a symbol manipulator: manipulating encodings
for numbers, or letters, or images, etc. It is postulated that the human brain is also
a symbol manipulator. The foundations of AI lie in the fact that most intelligent
systems are physical symbol systems and since a computer is a general purpose
symbol manipulator, it can be used for studying or simulating intelligence.

Chapter 10

224

Myro Review

No new Myro functions were introduced in the Chapter. In the completed version
there will be some neural network functions described here.

Python review

choice(LIST)
Returns a randomly selected element from LIST. This function is to be imported
from the random module.

List Comprehensions
A short and elegant way to construct lists. See Python documentation for more
information.

Exercises

1. Read Alan Turing’s paper Computing Machinery and Intelligence. You can
easily find a copy of it by searching on the web.

2. Do a web search for “Searle Chinese Room argument” to locate Philosopher
John Searle’s arguments that no matter how intelligent a computer or a program
gets, it will never have a “mind”.

3. Rewrite display for Tic Tac Toe game to display the board graphically.

4. Design a language of one-word English commands for the Scribbler. Write a
program to input one command at a time, interpret it, and then execute the
command on the Scribbler.

5. Extend the language from Exercise 4 to include queries (e.g. wall?) and then
modify your program to incorporate such queries.

6. Do a survey of speech understanding systems.

7. Do a survey of computational linguistics.

8. In the Tic Tac Toe program designed in this Chapter, we assumed that the user
always plays an X. Modify your program so that it gives the user a choice at the
beginning of the game. Further, at the end of each game, the pieces are swapped.

Artificial Intelligence

225

9. In the function move defined for Tic Tac Toe, the program accepts whatever
the user inputs for their move. Try the program and instead of entering a valid
move, enter your name instead. What happens? Such an errors might be easily
detected since it will halt the program’s execution. However, next try entering a
number from 1-9 using a spare position that is already occupied in the board.
What happens? Modify the function to accept only correct moves. If the user
enters an incorrect move, the program should point that out and give the user
another chance.

10. The function gameOver can make use of the winner function to make its
decision in the Tic Tac Toe program. Rewrite gameOver to do this.

11. One way to measure how one strategy compares against another is to play it
against another strategy over and over again recording the number of wins,
losses, and draws. Modify your Tic Tac Toe or RPS program to substitute the
second strategy for the user (instead of taking input from the user, it uses a
function that implements the second strategy. Add statements to play the game
many times (say 1000) and record the wins, losses, and draws. You may also
want to suppress all board output since the game is being played completely
inside the program. Do a comparison of all the strategies discussed in this
Chapter and how they compare against each other.

	Chapter10-H
	Chapter10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

