Games, Robots, and Robot Games: Complementary
Contexts for Introductory Computing Education

Dianna Xu
Bryn Mawr College
101 North Merion Ave
Bryn Mawr, PA 19010

Douglas Blank
Bryn Mawr College
101 North Merion Ave
Bryn Mawr, PA 19010

Deepak Kumar
Bryn Mawr College
101 North Merion Ave
Bryn Mawr, PA 19010

dxu@cs.brynmawr.edu dblank@cs.brynmawr.edu dkumar@cs.brynmawr.edu

ABSTRACT

Using games to teach introductory computing courses pro-
vides another context with which to exploring the possible
attraction, retention, and education of a new generation of
computer science (CS) students. At Bryn Mawr College,
we have been actively exploring these contexts and have
identified four that have great promise for use in teaching
introductory computing courses: visualization, multimedia,
robotics, and, most recently, games. We are currently using
and analysing robots and have some preliminary results. We
believe that much of what we have learned in using robots
in the classroom can be applied to the other contexts, es-
pecially gaming. In addition, many aspects of gaming can
also be used in an introductory course using robots. This
paper will explore robotics, gaming, their interactions, and
provide suggestions on how best to proceed in making the
most out of games in the classroom.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and In-
formation Science Education - computer science education,
curriculum

General Terms

Design, Experimentation

Keywords

Game development, robot, undergraduate education

1. INTRODUCTION

At Bryn Mawr College, we have been exploring a variety
of alternate ways of approaching the introduction to com-
puting course, CS1 (see [4]). Recently, an additional vari-
ation has been identified: teaching computing in “context”
[17]. Teaching in context meshes very well with our other
patterns of curricular design. By framing computer science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GDCSE’08 Feb. 28-Mar. 3, 2008, On board the Celebrity Century cruise
ship, departing from Miami, FL.

Copyright 2008 ACM 978-1-60558-057-9/08/02 ...$5.00.

in a particular context, a topic can be made concrete and
can be shown to have direct relevancy to a student’s un-
derstanding. We have identified four contexts to explore:
visualization, multimedia, robotics, and gaming. In this pa-
per, we will describe our initial findings in using robotics as a
context, and how those findings could be applied to gaming
in the introductory course.

The effect of games on student interest and motivation
is apparent and the addition of a “games” course in a CS
curriculum is gaining momentum. Game development can
be seen incorporated into the CS curriculum in all levels and
in various ways. A number of schools have chosen to use a
“games first” approach in CS1 or CS2 classes [2], [10], [9],
while others are creating entire programs or concentrations
focusing on game development [1], [5], [7], [11]. Some started
introducing games as an experimental special topics class
since the early 90s [14], while for many others including Bryn
Mawr College, it is still a new teaching methodology that is
being explored.

Teaching computer science in a small, all-women liberal
arts college has its unique set of challenges. Very few of
our majors come to Bryn Mawr College with any intention
of pursuing a degree in computer science. This is due to a
variety of reasons, including prior negative exposure or com-
plete lack of exposure to computer science. It has been our
experience, however, that many of them do end up chang-
ing their minds and decide to major after having taken our
introductory course. The biggest challenge turns out to be
to get the students to want to take a first course in com-
puter science in the first place, and preferably to get them
to take it in their first year. We need ways to rework our
introductory course so that it is not just about learning how
to program, but that during the process, the students will
also experience some exciting application areas of computer
science. We believe that providing context to the education
is motivationally important and just plain more fun.

We would also like our students to learn about the poten-
tial of how the computer may assist them in their studies,
whether or not they continue to take courses in computer sci-
ence. The computer science program at Bryn Mawr College
differs from many in that instead of training only computer
scientists, it aims to produce women who have a full grasp of
modern technology, the role it plays, and its implications in
society, regardless of their future career plans. In the access
provided to individuals to previously inconceivable amounts
of experience and information, we believe computer science
has emerged beyond its traditional perception as a subset of
Mathematics and Engineering to the very core of a liberal

Figure 1:
Clockwise, from top-left: lunchbox carrying case,
gamepad, flashlight, Scribbler robot with IPRE
Fluke (camera and serial Bluetooth adaptor), USB
Bluetooth dongle (for computer if it doesn’t have
Bluetooth), and drawing pens.

The IPRE Robot Kit, Fall 2007.

arts education [4].

2. COMPUTING IN CONTEXT: ROBOTICS

Two of us (Blank and Kumar) are co-principal investi-
gators of the Institute for the Personal Robot in Educa-
tion (IPRE) (http://www.roboteducation.org), hosted, in
part, at Bryn Mawr College. IPRE, a joint partnership with
the Georgia Institute of Technology and Microsoft Research,
is developing a personal robot, software, and curricula to
help teach introductory computing courses [3]. The IPRE
vision is that the text for an introductory course would come
shrink-wrapped with a ready-to-run personal robot in the
same price range as current CS1 texts (see Figure 1). In
this instance, robotics is the context and provides the in-
trinsic motivation to both the instructor and the student to
explore the science and engineering behind it.

We believe that much of the philosophy of the robotics-
context can be applied to other contexts, especially gaming.
To explore this idea, we first developed a set of general prin-
ciples.

Let the needs of the curriculum drive the design
of the materials The design of the context (such as the
personal robot) should be motivated by the requirements of
our new curriculum and should be an outcome of feedback
obtained from students in our pilot course offerings. For
example, we found that robots designed for education don’t
have much in common with robots designed for industry.
This suggests that games for education might not have much
in common with games for industry.

Let the tasks of the context drive the motivation
to learn. The table of contents of the robotics-context text
does not focus on programming constructs, such as “loops”,
“variables”, etc. but rather topics like “Making Music”, and
“Dancing.” The students are introduced to loops and vari-
ables as they need them to solve a particular robotics-based
problem. In fact, many of the students “invent” recursion on
their own, because they need it and find it obvious.

Use tools that are easy to use, scale with experi-

ence We want the students use of the tools (computer, pro-
gramming language, IDE, etc.) to be such that they are not
designed specifically (and only) for use in CS1. We want the
entire programming environment to be “pedagogically scal-
able.” This way, concepts acquired in the new CS1 easily
carry over into more advanced computing situations with-
out the need to change the programming environment. We
want students to be immediately able to jump to the most
interesting problems in a context. This puts the emphasis
on the algorithm rather than on programming language or
programming technique.

Create an accessible, engaging environment for
new, diverse population of students It has been ar-
gued that the introductory computer science curriculum is
broken and is in need of a major overhaul [3]. We are tak-
ing the issue of accessibility to a wider population as our
primary goal. We have recognized the attractiveness and
engagement potential of contexts like the personal robots
and gaming. However, we are also mindful of the adverse
affects of certain technological contexts can have on peo-
ple from different gender and backgrounds. Our curricular
materials are an attempt to address these issues.

Computer science is not programming While pro-
gramming is central to our approach to CS1 we are also
conscious of avoiding the misperception that programming
is all there is to computer science. Students from the new
CS1 should come away with a solid understanding of the
scope of computing and the role of programming in it. The
use of “game design” (see below) falls into this category.

Make computing a social activity There is an explicit
attempt in our approach to make computing a social activity.
By this we mean that we will strive, in our curriculum, to
make every aspect of the learning process a collaborative
activity. Students learn from each other and by working
on their robots in their own environments (dorm hallways,
dining halls, study spaces, labs) and interacting with others
in meaningful ways.

Performances vs. competitions All robot exercises in
the course include demonstrations. However, the demon-
strations are to be depicted and evaluated as performances
and not as competitions among peers. We have found that
competitions tend to attract only a small population of stu-
dent body and serve to deter many students away. However,
a non-competitive, collaborative, and social environment en-
courages learning and motivates students to strive for higher
goals.

Make computing a medium for creativity Creativ-
ity is central to robot design and we have included several
creative aspects into the curriculum. Examples include ex-
ercises that demonstrate robot behaviors like dances, chore-
ographed movements, music and song generation, movie mak-
ing, game playing, robot application design, etc. Most ex-
ercises will be open ended (i.e. correctness of a program is
not determined by a limited set of output) and encourage
students to experiment, play, and be creative.

As is evident from above, the curriculum for a CS1 course
that uses personal robots takes a fresh perspective. While it
deviates from the traditional approach, the overall coverage
of topics provides a comprehensive exposure of traditional
CS1 concepts. In fact, in many ways, it goes beyond the tra-
ditional notion of a CS1 syllabus (see Figure 2). Yet, the key
driving factor in the design of this curriculum is the robot
context. The materials have been used in six pilot offerings

Figure 2: For one of the assignments, students pro-
gram the Scribbler to make its way into the pyramid,
photograph the walls, and then exit.

of CS1 courses: at Bryn Mawr College in spring and fall
2007 with 60 students (nearly all women), at Georgia Tech
in spring, summer, and fall 2007 with over 200 students.
Extensive feedback (both qualitative and qualitative) was
collected from all completed courses. The results obtained
from students can be summarized these main points [15]:

1. When taught in context, students still learned CS con-
cepts

2. Robots made learning experience more hands-on, tan-
gible, and exciting

3. Most frustrating parts were dealing with robot hard-
ware inconsistencies

4. Viewed CS as a type of logic and problem solving;
requiring patience & thought

5. Discovered that CS and robots are applicable to the
real world

These are informative and suggestive findings. We will
now turn to a computer game design course and explore it
in these points.

3. A GAME DESIGN COURSE

“Video Game Design and Programming” is a special topics
course where a game of the students’ own design is devel-
oped as a semester-long group project. It was initially of-
fered at Bryn Mawr College in the spring semesters of 2005
and repeated in the spring of 2007. In many institutions’
CS curriculum, a game course is usually offered at the ju-
nior or senior level to majors with significant programming
experience and preferably a prerequisite course on computer
graphics. At Bryn Mawr College, it was important to the
department and the instructor that the course be accessi-
ble to a wider audience than a traditional CS course would
typically entail. In a small liberal arts college with a rich
tradition of excellence in humanities and social sciences, the
possibility of rewarding interdisciplinary work in such a class

is clear. On the other hand, it also allows for larger class
sizes than the small number of CS majors would otherwise
make up, thus improving group projects possibilities and
class dynamics. Ultimately, it was also our hope that this
course would showcase an exciting and fun application area
of computer science, as well as facilitate communication be-
tween our majors and non-majors. Thus, although “Video
Game Design and Programming” was listed as a 200-level
CS course, prior programming experience was not required
and we made efforts to advertise to a wide variety of stu-
dents. The final enrollment makeup still had CS majors as
the majority, but also included a number of students who
have never before programmed. Some were self-professed
“avid” gamers but others were simply curious about a “fun”
course.

3.1 Focusing on Game Design

One approach that is different in the game course at Bryn
Mawr College, is the focus on game design rather than game
development. The decision was partly based on making the
course a more creative and social activity. Students in the
class were asked to perform a series of exercises in class and
out in order to familiarize with the concepts such as game
play, rules, feedbacks, rewards and punishments and game
balancing. It was also a great way to get the brain storming
started so that they may firm up on the design of their own
game. Some examples are listed here.

1. Game co-tutorial. The students were asked to teach a
friend or a classmate to play a game. They were then
to report on the tutorial experience addressing issues
such as how it takes for the trainee to get good enough
to have fun, what aspect of the game did the trainee
find easy to learn or confusing, and whether that was
as expected.

2. Modifying poker. The students were allowed one rule
change (modify, add or delete) of the popular poker
game Texas Hold’em. The resulting game must still
be a playable variation. This allows for a deeper un-
derstanding of the roles of game rules.

3. Rapid games. The students were asked to design fast
repeatable games that can be played in under a minute,
such as the classic rock-paper-scissors.

4. Theme-based games. The students drew themes such
as “vampire”; “subways”, “life at the sea” from a prover-

bial hat and designed games accordingly.

5. Game hacking. The students were asked to “hack” an
existing open-source or freeware game such as Quake
and Crossfire. Only small cosmetic changes were re-
quired, such as when an enemy was shot in Quake, he
turned into a chicken. Creativity was greatly encour-
aged.

6. The Boardgame test. When the students present their
own game proposals, they were asked to write down
their game rules and play it as a board game, to test
the completeness and effectiveness of the rules.

Besides design, time was also spent on other areas of com-
puter science with applications in games, such as animation
and kinematics, game Al, networked and multiplayer games,
etc.

Figure 3: Student game - Otis: splash screen

Figure 4: Student game - Otis: screen shot

3.2 Game Development

Most modern 3D games require multi-million dollars of
investment, teams of well trained professionals across many
disciplines, as well as years of hard work under often very
harsh deadlines. Postmortems for games published in game
developers’ websites and conference proceedings offer great
glimpses into the industry. The now open-source game en-
gines such as Quake and Doom provide further insights into
game development as software engineering projects. The
game industry and its history from early assembly games
to modern game engines and data driven designs from a
software engineering perspective was of great interest to the
students [6], [12]. On the other hand, what can be realisti-
cally achieved in an academic semester must be significantly
scaled down from industry standards. The students were
told to propose and design the game as a whole, but im-
plement at most only one level or one quest, as a concept
demonstration. It was nevertheless a constant battle of time
to pull all the pieces together for most of the teams. Many
found that in the end they accomplished much less than they
originally thought they could, but most were able to come

to a functional minimum so that it was possible to see how a
polished and complete version could be achieved, given more
time (see Figures 3 and 4).

3.3 Lessons Learned

The course was well received and obtained very favorable
student reviews. The dynamics of having both majors and
non-majors worked to great advantages of all groups. The
students, particularly the CS majors, were grateful for the
addition of skill sets that were sorely in need and were quite
unanimous that those contributions were equally important
as programming.

There are startling differences in the games genres that
male and female students find interesting. None of the all-
female groups gave any thought to any type of shooting
games. The most popular choices seemed to be socially mo-
tivated Role-playing games (RPG) or mystery/puzzle cen-
tered adventure games. The male students on the other
hand must be reminded over and over again that First-
person Shooters (FPS) were not the only type of games.

The greatest frustration students experienced during the
course were the inconsistencies as well as incompatibilities of
the many different software packages involved in content cre-
ation. Typically a group used two or three separate toolkits
for modeling, then additional ones for texturing and anima-
tion. The importation into the game engine often did not
work smoothly, resulting in texture loss or other artifacts. A
student stated: “I felt like a lot of time was wasted putting
‘things’ into the game. I would have preferred spending more
time perfecting the flow and potentially improving the ‘fun’
of the game.”

A survey done on the female students after the class re-
vealed that while they liked having control over the creation
of their own games, all found the game development pro-
cess “rather tedious” and none would consider game develop-
ment as a future career option. In general the women spend
much less time on gaming than their male classmates and
for those that do play, none plays FPS. These differences
between the genders have been observed and argued over
before [13], to the extent that some believed that including
games in the curriculum actually served to discourage rather
than encourage female enrollment [16]. We believe that in-
structor awareness and attention to the differences will be
essential in preventing such difficulties.

4. A GAMING CONTEXT

It is our hope that we can learn from the success of in-
corporating context-relevant robotics into our introductory
curriculum and work computer games into a similar frame
work. After the explorations of the two initial offerings of
the course, we are proposing the following recommendations.

A game engine designed specifically for educational
purposes We believe that in order to develop an introduc-
tory course with a gaming context that incorporates the
goals and focuses outlined in Section 2, a new pedagogically-
oriented game engine designed with the intention of being
used in CS1 will be of great importance. Such a game engine
should ideally be object-oriented, come with a 3D primitive
library of good size and variety, as well as modeling, textur-
ing and animation tools that are designed to work with such
an engine. Such a software package will free the students
from spending an unwarranted amount of time on content
creation.

An in-context course needs an in-context textbook
Despite the recent popularity for game development courses,
it remains difficult to find appropriate textbooks. Game de-
sign and game development are typically covered in entirely
different books. There’s usually a need to incorporate a fur-
ther book on the particular game engine of choice, and often
even more reading materials on other tools used for content
creation and game art.

Books that cover game development are often too industry-
oriented. They are laden with technical concerns and tricks,
but lack a more general pedagogical point of view. Our
students were particularly interested in the history and evo-
lution of the gaming industry from a software engineering
perspective and reading materials on this aspect were few
and far in between. In addition, other areas of computer sci-
ence relevant to game development such as computer graph-
ics, artificial intelligence, networks and multimedia are often
never properly introduced in context, but appear in the form
of abrupt algorithm outlines to solve a problem or meet a
goal.

Textbooks have been developed for other non-conventional
but in-context approaches for teaching introductory courses
to great success [8]. We believe that a similar effort is nec-
essary for a in-context gaming course.

Be mindful of the gender differences As mentioned
in subsection 3.3, women tend to have a very different set of
focuses in computer games. They are typically more socially
oriented. It is often the case that for many of our female
students, it is not enough to create something (software,
games or otherwise) just because it’s fun. They tend to
show more interest and engagement if it has real life impact
or human content. When asked why she was not interested
in FPS games, one of our students said plainly: “Because
it’s boring. The whole point is to kill anything that moves.”

In addition, there are societal and cultural (often neg-
ative) preconceptions of the type of people who play and
develop computer games. There is a real danger that intro-
ducing games into the curriculum will serve more as a de-
terrence rather than encouragement. The difficulty is easily
surmountable if the instructor is mindful of such issues and
address them accordingly.

Games and robots have much in common in pro-
viding context for CS-1 To that end, we experimented in
our most recent offering of CS110 (Fall 2007), the IPRE CS-
1 course using the approach of personal robots. Robots and
robot-related assignments were given for most of semester.
Towards the end, students were given a project of creat-
ing a video game in the last few weeks in groups of 2-
4. The project was made more interesting through the
gamepad support in Myro (a Python based library devel-
oped at IPRE). The final student games showed amazing
creativity and evident student enthusiasm (http://www.cs.
brynmawr . edu/games). Student survey showed that they re-
ally enjoyed both the robots and the games aspects of the
course. We also have phenomenal and unprecedented pre-
registration numbers for CS-2 next year.

Acknowledgments We would like to thank our colleagues
at the IPRE, especially Microsoft Research.

S. REFERENCES

[1] L. Argent, B. Depper, R. Fajardo, S. Ghertson,
S. Leutenegger, L.. M., and J. Rutenbeck. Building a
game development program. [EEE Computer,

2]

3]
[4]

[5]

(6]
[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

39(2):52-61, 2006.

J. Bayliss and S. Strout. Games as a “flavor” of csl. In
SIGCSE 2006 Proceedings, pages 500-504, March
2006.

D. Blank. Robots make computer science personal.
Commun. ACM, 49(12):25-27, 2006.

D. Blank and D. Kumar. Patterns of curriculum
design. pages 77-86. Kluwer Academic, 2003.

R. Coleman, M. Krembs, A. Labouseur, and J. Weir.
Game design & programming concentration within the
computer science curriculum. In SIGCSE 2006
Proceedings, pages 545-550, March 2006.

D. Dalmau. Core Techniques and Algorithms in Game
Programming. New Riders Publishing, 2004.

T. Fullerton. Play-centric games education. IEEFE
Computer, 39(2):36—42, 2006.

M. Guzdial. Introduction to computing and
programming in Python: a multimedia approach.
Pearson/Prentice Hall, Upper Saddle River, NJ, 2005.
S. Leutenegger and J. Edgington. A games first
approach to teaching introductory programming. In
SIGCSE 2007 Proceedings, pages 115-118, March
2007.

M. Lewis and B. Massingill. Graphical game
development in CS2: A flexible infrastructure for a
semeseter long project. In SIGCSE 2006 Proceedings,
pages 505509, March 2006.

J. Murray, I. Bogost, M. Mataes, and M. Nitsche.
Game design education: Integrating computation and
culture. IEEE Computer, 39(2):43-51, 2006.

K. Oxland. Gameplay and Design. Addison Wesley,
2004.

P. Palma. Viewpoint: Why women avoid computer
science. Communications of the ACM, 44(6):27-30,
2001.

I. Parberry, M. Kazemzadeh, and T. Roden. The art
and science of game programming. In SIGCSE 2006
Proceedings, pages 510-514, March 2006.

J. Summet, K. O’'Hara, T. Balch, S. Tansley,

D. Blank, and D. Kumar. Designing personal robots
for education: Hardware, software and curriculum in
practice (under review). 2007.

H. Walker. Do computer games have a role in the
computing classroom? ACM SIGCSE Bulletin,
35(4):18-20, 2003.

S. Yarosh and M. Guzdial. Narrating data structures:
the role of context in CS2. In ICER ’07: Proceedings
of the third international workshop on Computing
education research, pages 87-98, 2007.

