
CS383 -- April 2

PostgreSQL as a Document
Store

Setup
Make a table
• jsonb or json

• 'b' is for binary -- or better

• 'b' is similar to Mongo BSON

• Use

• json when lots of inserts and
simple queries

• only json operators are ->
and ->>

• jsonb when need complex
queries

• Can have any number of normal
SQL table items in same table

drop table if exists jsonact;

create table jsonact (
 id int generated always as identity,
 jjdata jsonb,
 primary key(id)
);

Add Data

• Using same code as
shown last week
except put into PSQL
rather than Mongo

• " and '

• json.dumps makes a
string from python
dictionary & array

{'actor': 200,
 'first_name': 'JULIA',
 'last_name': 'FAWCETT',
 'films': [{'categ': 2,
 'catname': 'Animation',
 'filmid': 121,
 'filmname': 'CAROL TEXAS'},
 {'categ': 3,
 'catname': 'Children',
 'filmid': 993,
 'filmname': 'WRONG BEHAVIOR'},
 ...]}

for rr in rrr:
 print(rr)
 cursor.execute("insert into jsonact(jjdata) values('{}')"
 .format(json.dumps(rr)))

Fields list?

• What fields are in your
documents,

• how often?

• So in this table, all of the
documents have exactly
the same keys

• 4*199=796

SELECT jsonb_object_keys(jjdata) from jsonact
....
796 rows

with aaa(keys) as (SELECT jsonb_object_keys(jjdata) from jsonact)
 select count(keys), keys
 from aaa
 group by keys;
 count | keys
-------+------------
 199 | actor
 199 | films
 199 | first_name
 199 | last_name
(4 rows)

jsonb_object_keys(COLUMN_NAME)

Basics
-> and ->>

• -> gets a JSON object

• ->> gets a stringified
objects

• Most JSON operators have
> and >> versions

• Note quotation marks

• in query

• in results

sakila=# select jjdata->'first_name'

 from jsonact

 order by jjdata->'first_name'

 limit 2;

 ?column?

 "ADAM"

 "ADAM"

sakila=# select jjdata->>'first_name' as
first_name

 from jsonact

 order by jjdata->>'first_name'

 limit 2;

 first_name

 ADAM

 ADAM

Select .. where
always use ->>

• You might be able to use ->, I have never
gotten it to work

• This works for any field at top level in
document

• All usual SQL comparators work

• like, in, <, <=, ...

• BUT ->> returns text so if you want a numeric
comparison must cast

• (jjdata->>'actor')::int=19

• cast(jjdata->>'actor' as int)=19

sakila=# select *

 from jsonact

 where jjdata->>'first_name'='BOB';

 id | jjdata

----+--------

 19 | {"actor": 19, "films": [{"categ": 1, "filmid":
212, "catname": "Action", "filmname": "DARN
FORRESTER"}, {"categ": 2, "filmid": 208,
"catname": "Animation", "filmname": "DARES
PLUTO"}, {"categ": 14, "filmid": 711,
"catname": "Sci-Fi", "filmname": "RAGING
AIRPLANE"},], "last_name": "FAWCETT",
"first_name": "BOB"}

(1 row)

Alternate query operator
more like Mongo

• @> (and @>>)

• specify column on left and
JSON to match on right

• I usually find this less useful

• and rather annoying

• '' and ""

select jjdata->>'first_name'
 as first_name,
 jjdata->>'last_name'
 as last_name
from jsonact
where jjdata @> '{"first_name":"BOB"}';

 first_name | last_name
------------+-----------
 BOB | FAWCETT
(1 row)

One-to-One Embedded Documents
create table sample_table (json_data jsonb);
insert into sample_table
values
 ('{ "year": "2011", "make":"Toyota", "model":"Camry", "misc": {"color": "Gray", "doors": "4"}}'),
 ('{ "year": "2017", "make":"Honda", "model":"Civic", "misc": {"color": "White", "doors": "4"}}'),
 ('{ "year": "2017", "make":"Toyota", "model":"Camry", "misc": {"color": "Red", "doors": "2"}}'),
 ('{ "year": "2023", "make":"Honda", "model":"Accord"}'),
 ('{ "year": "1908", "make":"Ford", "model":"T", "misc": {"doors": "2"}}')
;
select * from sample_table where json_data->'misc'->>'color'='Red';
 json_data
--
 {"make": "Toyota", "misc": {"color": "Red", "doors": "2"}, "year": "2017", "model": "Camry"}

select json_data->'misc'->>'color' as color from sample_table
where (json_data->'misc'->>'doors')::int>3;
 color

 Gray
 White
 Gray
 White
(4 rows)

just stack ->

Casting to do numeric compaisons

One-to-Many Embedded Documents
like films in the actor table

• note that
{"categ":16} is
contained in []

• finds all actors
who were in a
category 16 movie
at least once

select jjdata->'first_name' as first_name,
 jjdata->'last_name' as last_name
 from jsonact
 where jjdata @> '{"films":[{"categ":16}]}'
 limit 2;

 first_name | last_name
------------+------------
 "NICK" | "WAHLBERG"
 "ED" | "CHASE"

JSONB_ARRAY_ELEMENTS
getting one from the many (not easy in Mongo)

• JSONB_ARRAY_ELE
MENTS breaks up
the array

• as expected

• But, still get every
film by any actor who
was in a category 16
film, not just the
category 16 films.

select jjdata->'first_name' as first_name,
 jjdata->'last_name' as last_name,
 JSONB_ARRAY_ELEMENTS(jjdata->'films') as films
from jsonact
where jjdata @> '{"films":[{"categ":16}]}';

 first_name | last_name |
films
------------+------------
+---

 "NICK" | "WAHLBERG" | {"categ": 1, "filmid": 105,
"catname": "Action", "filmname": "BULL SHAWSHANK"}
 "NICK" | "WAHLBERG" | {"categ": 2, "filmid": 314,
"catname": "Animation", "filmname": "FIGHT JAWBREAKER"}
 "NICK" | "WAHLBERG" | {"categ": 3, "filmid": 485,
"catname": "Children", "filmname": "JERSEY SASSY"}

"Lateral" Joins
A postgreSQL thing

• query at right looks like a cross join

• so would give
count(jsonact)*count(jsonb...)
rows

• 199*(199*20ish)

• But it is a "lateral" join so only gives
199*20ish

• 5447

• select count(*) from film_actor;

• 5462 (I do not know what
happened to the missing 15)

select count(*)

 from jsonact,

 JSONB_ARRAY_ELEMENTS(jjdata->'films') AS films;

Lateral again

• Clearly see here that
actors are only getting
"their" films

select jjdata->>'actor', count(*)
from jsonact,
 JSONB_ARRAY_ELEMENTS(jjdata->'films') AS films
where jjdata->>'first_name' in ('BOB', 'LUCILLE')
group by jjdata->>'actor';

 ?column? | count
----------+-------
 138 | 24
 19 | 25
 20 | 30

Lateral for just categ 16

• First one gives all films
for any actor who was
in a cat 16 film

• this is Mongo
equivalent

• Part of second query is
essentially identical to
first query

• why '= 16' twice

select count(*)
from jsonact,
 JSONB_ARRAY_ELEMENTS(jjdata->'films') AS films
where jjdata @> '{"films":[{"categ":16}]}';
 --- 4536

with aaa(id, jjdata, filmdata) as (select *
from jsonact,
 JSONB_ARRAY_ELEMENTS(jjdata->'films') AS films
where jjdata @> '{"films":[{"categ":16}]}')
select jjdata->>'first_name', filmdata->>'filmname'
from aaa
where (filmdata->>'categ')::int=16;
 --- 318

select jjdata->>'first_name' as first_name,
 films->>'filmname' as filmname
from jsonact,
 JSONB_ARRAY_ELEMENTS(jjdata->'films') AS films
where (films->>'categ')::int=16;
 --- 318

Queries from last week
but in Postgres

Query Postgres

find one actor whose actorid is less than 5 select * from jsonact where (jjdata->>'actor')::int<5 limit 1;

find all actors whose actorid is less than or equal to 5 select * from jsonact where (jjdata->>'actor')::int<=5;

find all actors whose actor id is greater than 198 select * from jsonact where (jjdata->>'actor')::int > 198;

find all actors in films with an id greater than or equal to
990

select * from jsonact where (jjdata->>'actor')::int >= 990;

find all actors whose name is not BOB select * from jsonact where jjdata->>'first_name' != 'BOB';

find all actors whose name is BOB or LUCILLE (use in) select * from jsonact where jjdata->>'first_name' in ('BOB',
'LUCILLE');

find all actors whose name is not BOB or LUCILLE select * from jsonact where jjdata->>'first_name' not in
('BOB', 'LUCILLE');

Queries from Lab
but in Postgres

number of actors with first name BOB select count(*) from jsonact where jjdata->>'first_name' =
'BOB';

number of actors with first name BOB or PENELOPE select count(*) from jsonact where jjdata->>'first_name' in
('BOB', 'PENELOPE');

actor with first name that starts with S and end with R show
only first name

select jjdata->'first_name' from jsonact where jjdata-
>>'first_name' like 'S%R';

actor with a Z in either first or last name
select jjdata->>'first_name' as firstname, jjdata-

>>'last_name' as lastname from jsonact where jjdat

a->>'first_name' like '%Z%' or jjdata->>'last_name' like

first name of all actors in film with id 513 select jjdata->>'first_name' as firstname, from jsonact where
jjdata @> '{"films":[{"filmid":513}]}';

same as previous, but only showing the name of the film
select films->'filmname', films->'filmid' as fid from jsonact,

jsonb_array_elements(jjda

ta->'films') as films where (films->'filmid')::int=513;

actor whose first name has an E and has been in a film in
category 16

select films->'filmname', jjdata->>'first_name' from jsonact,
jsonb_array_elements(jjdata->'films') as films where (films-

>'categ')::int=16 and jjdata->>'first_name' like '%E%';

References

• https://gist.github.com/kcranston/b309664dc8864e680813f0f2b87c3b5b

• https://hashrocket.com/blog/posts/dealing-with-nested-json-objects-in-
postgresql

https://gist.github.com/kcranston/b309664dc8864e680813f0f2b87c3b5b

