PostgreSQL as a Document
Store

CS383 -- April 2

Setup

Make a table

e jsonb or json

* b s for binary -- or better drop table if exists jsonact;

* 'b'is similar to Mongo BSON |
create table jsonact (

t Use id int generated always as identity,
» json when lots of inserts and jjdata jsonb,
simple queries D rima ry key (id)
 only json operators are ->) ;

and ->>

* jsonb when need complex
queries

 Can have any number of normal
SQL table items in same table

Add Data

* Using same code as
shown last week
except put into PSQL
rather than Mongo

° I and |

e json.dumps makes a
string from python
dictionary & array

{'actor': 200,

"first_name': "JULIA',

"last_name’: "FAWCETT",

"films': [{'categ': 2,
"catname': "Animation',
"filmid': 121,
"filmname': "CAROL TEXAS'},

{'categ’': 3,

"catname': 'Children’,
"filmid': 993,
"filmname': "WRONG BEHAVIOR'},

g,

for rr 1n rrr:

print(rr)
cursor.execute("insert into jsonact(jjdata) values('{}')"
)))

. format(json.dumps(rr

Fields list?
jsonb_object keys(COLUMN_NAME)

e \What fleldS are in YOUI’ SELECT jsonb_object_keys(jjdata) from jsonact
documents, 796 rows
with aaa(keys) as (SELECT jsonb_object_keys(jjdata) from jsonact)
e how often? select count(keys), keys
from aaa
group by keys;
count | keys
_______ +____________
: : 199 actor
e So in this table, all of the 199 | films
documents have exactly Tog | Jirst_name
ast _name

the same keys (4 rows)

. 4*199=796

- sakila=# select jjdata->'first_name'
BﬂSlCS from jsonact

-> and ->> order by jjdata->'first_name'
limit 2;
?column?
e ->getsa JSON object = o
"ADAM"
e ->> gets a stringified "ADAM"

objects

sakila=# select jjdata->>'first_name' as
first_name
from jsonact
order by jjdata->>'first_name'
limit 2;
« in query first_name

 Most JSON operators have
> and >> versions

 Note quotation marks

* |INn results ADAM

Select .. where

always use ->>

* You might be able to use ->, | have never
gotten it to work

* This works for any field at top level in
document

« All usual SQL comparators work
e like, In, <, <=, ...

« BUT ->> returns text so if you want a numeric
comparison must cast

 (jjdata->>'actor’)::int=19

« cast(jdata->>'actor' as int)=19

sakila=# select *
from jsonact
where jjdata->>'first_name'="BOB’;

id | jjdata

_____l_ ________

19 | {"actor" 19, "films": [{"categ": 1, "filmid":
212, "cathame”: "Action”, "fllmname" "DARN
FORRESTER"} {"categ": 2 "filmid": 208,
"cathame”: "Animation”, "filmname": "DARES
PLUTQO"}, {"categ": 14, "filmid": 711,
‘catname”: "Sci-Fi", "filmname": "RAGING
AIRPLANE"},], "last_name": "FAWCETT",
‘first_name": "BOB"}

(1 row)

Alternate query operator

more like Mongo select jjdata—>>'first name'

as first_name,
jjdata—>>"'1last _name’
¢ @> (and @>>) as last_name
from jsonact

 specify column on left and where jjdata @ '{"first_name":"BOB"}';
JSON to match on right

first_name | last_name
____________ +___________

BOB | FAWCETT
(1 row)

e | usually find this less useful
e and rather annoying

° Iland I

One-to-One Embedded Documents

just stack ->

create table sample_table (json_data jsonb);
insert into sample_table

values
('{ "year": "2011", "make":"Toyota", '"model":"Camry", "misc": {"color": "Gray", '"doors": "4"}}'),
('{ "year": "2017", "make":"Honda", "model":"Civic", "misc": {"color": "White", "doors": "4"}}'),
('{ "year": "2017", "make":"Toyota", "model":"Camry", "misc": {"color": "Red", "doors": "2"}}'),
('{ "year": "2023", "make":"Honda", "model":"Accord"}'),
(I{ Ilyearll: II1908II’ Ilmakell:llFordll’ Ilmodelll:llTII’ "miSC": {Ildoorsll: II2II}}I)

select x from sample_table where json_data—->'misc'—>>'color'="Red"’;
json_data

{"make": "Toyota", "misc": {"color": "Red", "doors": "2"}, "year": "2017", "model": "Camry"}

select json_data—>'misc'—>>"'color' as color from sample_table
where (json_data—>'misc'—->>'doors"')::int>3;
color

One-to-Many Embedded Documents

like films In the actor table

select jjdata—>'first name' as first_name,
 note that jjdata—>'last_name' as last_name
"catea": 16! is from jsonact
{ g } where jjdata @ '{"films":[{"categ":16}]1}"
contained in |] limit 2
- finds all actors first_nane | last_nane
who were In a "NICK" | "WAHLBERG"
category 16 movie "ED" | MCHASE®

at least once

JSONB_ARRAY_ELEMENTS

getting one from the many (hot easy in Mongo)

select jjdata—>'first _name' as first_name,

e JSONB ARRAY ELE jjdata—>'last_name' as last_name,
MENTS breaks up | JSONB_ARRAY_ELEMENTS(jjdata—>'films') as films
from jsonact
the array where jjdata @ '{"films":[{"categ":16}]}"';
e as expected first_name | last_name |
films
o e +——
* But, still get every o
flm by any actor who ----—————————-———
was In acategcry 16 ""NICK") "| IIWAH!TBEﬁGu ‘ {"Cﬁteg": 1, "'Fl-l.mld"I:I 105,
£, not iust the catname": "Action", "filmname": "BULL SHAWSHANK"}
Im, J _ "NICK" | "WAHLBERG" | {"categ": 2, "filmid": 314,
category 16 films. "catname": "Animation", "filmname": "FIGHT JAWBREAKER"}
"NICK" | "WAHLBERG" | {"categ": 3, "filmid": 485,

"catname": "Children", "filmname'": "JERSEY SASSY"}

"Lateral" Joins
A postgreSQL thing

* guery at right looks like a cross join

* so would give
count(jsonact)*count(jsonb...)
rows

select count(”)

from jsonact,
* 199%(199*20ish)

JSONB_ARRAY_ELEMENTS(jjdata->'films') AS films;

 Butitis a "lateral” join so only gives
199*20ish

¢ 5447

» select count(*) from film_actor;

e 5462 (I do not know what
happened to the missing 15)

Lateral again

* Clearly see here that

actors are only getting select jjdata—->>'actor', count(x)

"their" films from jsonact,
JSONB_ARRAY_ELEMENTS(jjdata—>'films') AS films

where jjdata—>>'first name' in ('BOB', 'LUCILLE")
group by jjdata—>>'actor’;

?column? | count
__________ +_______
138 24
19 25
20 30

* First one gives all flms
for any actor who was
in a cat 16 film

e this iIs Mongo
equivalent

* Part of second query is
essentially identical to

first query

« why '=16" twice

Lateral for just categ 16

select count(x)

from jsonact,
JSONB_ARRAY_ELEMENTS(jjdata—>'films') AS films

where jjdata @ '{"films":[{"categ":16}]}";
——— 4536

with aaa(id, jjdata, filmdata) as (select x

from jsonact,
JSONB_ARRAY_ELEMENTS(jjdata—>"'films') AS films
where jjdata @ '{"films":[{"categ":16}]1}")
select jjdata—>>'first _name', filmdata—>>'filmname'
from aaa
where (filmdata->>'categ')::int=16;
——— 318

select jjdata—>>'first _name' as first_name,
films—>>"'filmname' as filmname

from jsonact,
JSONB_ARRAY_ELEMENTS(jjdata—>'films') AS films

where (films—->>'cateqg')::int=16;
——— 318

Queries from last week

but In Postgres

Query

Postgres

find one actor whose actorid is less than 5

find all actors whose actorid is less than or equal to 5

find all actors whose actor id is greater than 198

find all actors in films with an id greater than or equal to
990

find all actors whose name is not BOB

find all actors whose name is BOB or LUCILLE (use in)

find all actors whose name is not BOB or LUCILLE

Queries from Lab

but in Postgres

number of actors with first name BOB

number of actors with first name BOB or PENELOPE

actor with first name that starts with S and end with R show
only first name

actor with a Z in either first or last name

first name of all actors in film with id 513

same as previous, but only showing the name of the film

actor whose first name has an E and has been in a film in
category 16

References

o https://qist.github.com/kcranston/b309664dc8864e680813f0f2b87c3bSb

* https://hashrocket.com/blog/posts/dealing-with-nested-json-objects-in-
postgresq|

https://gist.github.com/kcranston/b309664dc8864e680813f0f2b87c3b5b

