
Transactions
Chapter 17 of Sail (minus 17.3 and 17.8-10)

What is a Transaction? (17.1)

Transaction - A unit of program execution that accesses and possibly updates
various data items.

But what makes transactions so special?

Problems we Have to Deal with

- Failures and crashes of various kinds hardware, software, etc
- Concurrent execution of multiple transactions on the same data

Transaction Required Properties (ACID)
Atomicity - Transactions are indivisible and the whole transaction is required to
occur or not occur. I.e. you can’t have only part of the transaction occur
Consistency - Execution of a transaction in isolation (i.e. with no other transaction
executing concurrently) preserves the consistency of the database.
Isolation - Even though multiple transactions may execute concurrently, the
system guarantees that, for every pair of transactions T1 and T2 it appears to T1
that either T2 finished execution before T1 started or T2 started execution after T1
finished
Durability - After a transaction completes successfully, the changes it has made to
the database persist, even if there are system failures.

Venmo Example
Is there a place where if this failed the Database would become
inconsistent?

Venmo Example Failure

How To Prevent This?
We need to include measures to keep the ACID Properties

Consistency: It is required that the sum of D + E is the same before and after the
Transaction or else there was an error.

Atomicity: Need to keep track of the Transaction steps before we run them so in the case of
a failure like this we know what we have or haven't done. I.e insure updates of partial
transactions are not reflected in the Database

 Durability: The updates made by the Transaction are stored on the disk or information on
how to do the updates is. So even if there are failures after the Database remains consistent.

Isolation: Need to create ability for correct concurrent transactions.(slides 14-23)

Durability

 - After a transaction completes successfully, the changes it has made to the
database persist, even if there are system failures.

- We talked about this before but having a log file that keeps track of the events
that a transaction did and what it did them on

- This makes it so those transactions can be replicated in the case of a hardware
or software failure

Transaction States

Active - the initial state and the during state.

Partially Committed - After the final statement has been executed .

Failed - When the transaction fails and cannot finish.

Aborted - After the transaction has been rolled back and restored to its state
before the beginning of the transaction.

Committed - After successful completion(data is stored on disk) and a new
consistent database is created.

Graph of Transaction Lifecycle

- From the aborted state there are 2 options:
- Restart the Transaction in the case of a hardware error or other non logic error
- Kill the transaction if there was an underlying error in the transaction

Ensuring Atomicity in Transaction Errors

Abort - Transaction failures and errors will occur meaning there will be times
when the transaction must be aborted

Roll back - Once the changes caused by an error full transaction have to be
undone

Log - A log is usually maintained in order to keep track of transaction history
and changes. Making for easy roll backs.

Observable External Writes

- Ex) Writes to a user’s screen, or sending an email
- These writes are tricky as once they are seen external to the database

system they cannot be erased
- Therefore it gets tricky to deal with and most systems decide to only allow

these types of writes after the transaction has already been committed

Solution to Observable External Writes

- Create systems that only do external writes after the transaction has been
committed and deal with these problems case by case

- Example) If an ATM fails after the transaction is committed in the database
but before the ATM prints the cash(external action).

- Solution: When the ATM starts back up we don’t want it to dispense the cash
because the person could have left. Instead we have it do a compensating
transaction to make up for the error.

Isolation

- This is a problem because what is one way that you think we could ensure
that the transactions are totally isolated? i.e. how could we make it so only
one transaction happens at a time

- We could make them serial but as we will discuss later concurrency is too
important for performance and therefore serial transactions is not an option

What Concurrency Allows

Overall: Greatly Improved performance

Specifically: 
-Improved throughput and resource utilization: Running transactions in parallel
allow CPU and disk resources to be used to their full potential and not wait around
for work. This allows more transactions to be executed quicker

Reduced waiting time: Running serially could create blocking scenarios where
short transactions are bottle necked by Longer ones(Similar to how synchronous
javascript code can slow everything down)

Atomicity With Concurrency

- With this constraint if a transaction fails the effect of the transaction must be
undone

- In concurrent transactions this makes it so that any other transaction
dependent on the one that failed must also be rolled back

- Dependency = T2 reads data written by T1 (T2 is dependent on T1)

Schedules

- Transaction execution sequences that detail the order in which instructions
are executed

- These can be used to our advantage to keep the benefits of concurrency
while insuring that our database is isolated and uses the correct data

- The rules are:
- A schedule must contain all rules from the transactions
- keep the order of the steps in individual transactions the same

Serial Schedule

Concurrent Transactions

Nonrecoverable Schedules

Cascading Schedules

Cascadeless Schedules

- Cascading rollbacks is terrible and in a complex series of transactions adds a
ton of extra work

- In order to create cascadeless schedules we just need to ensure that for any
pair of Transactions T1 and T2 where T2 is dependent on T1, the commit
operation for T1 happens before the read operation for T2

Cascadeless Schedule

Serializability

- A schedule is said to be serializable if it can be turned into its serial schedule
and they both return the same results(Figure 17.4 from the last slide)

- In these slides we will be focusing on Conflict serializability
- We will also only be focusing on Read and Write operations to make it

simpler

Conflict

- We say that Transactions I and J conflict if they are operations by different
transactions on the same data item, and at least one of these instructions is a
write operation

Using Conflicts To Find New Schedules

- Now we know that if we let I and J be non conflicting consecutive instructions
from different transactions we can flip their order

- Therefore if we can transform a schedule S to a schedule S’ through a series
of swaps of non conflicting instructions we say S and S’ are Conflict
Equivalent

- If a schedule is conflict equivalent with a serial schedule then we say that the
schedule is Conflict Serializable

Example Conflict Serializable

How to Determine Conflict Serializability

- We must construct a directed graph called a precedence graph from a
schedule

- The graph consists of a set of vertices which consist of all the transactions in
the schedule

- The edges will consist of all edges Ti -> Tj where one of the three holds

Precedence Graph Continued

- After building this graph if there are no cycles than the schedule S is conflict
serializable

- Though if there is a cycle than the schedule S is not conflict serializable

Practice
Make a directed graph from these 3 Transactions

Solution:

From this if we wanted to
we could perform
topological sort to get a
serial Transaction.

Sources

https://www.geeksforgeeks.org/precedence-graph-for-testing-conflict-
serializability-in-dbms/

https://db-book.com/slides-dir/index.html

https://www.geeksforgeeks.org/precedence-graph-for-testing-conflict-serializability-in-dbms/
https://www.geeksforgeeks.org/precedence-graph-for-testing-conflict-serializability-in-dbms/
https://db-book.com/slides-dir/index.html

