
MongoDB Aggregation
Pipelines
Cynthia Amoaba

Aggregation Pipelines
● Aggregation operations are used in MongoDB to allow us group, sort, perform calculations, analyze data, and

much more. Using this framework, MongoDB passes the documents of a single collection through a pipeline.

● Aggregation pipelines can have one or more stages. The order of these stages are important.

● Aggregation knobs or tunables typically take the form of operators that we can supply, that will modify fields,
perform arithmetic operations, reshape documents, or do some sort of accumulation task or a variety of other
things.

● Each stage acts upon the results of the previous stage.

The Aggregation Pipeline
● An individual stage of an aggregation pipeline is a data processing unit. It takes in a stream of input

documents one at a time, processes each document one at a time, and produces an output stream of
documents one at a time.

Example
db.posts.aggregate([

 // Stage 1: Only find documents that have more than 1 like

 {

 $match: { likes: { $gt: 1 } }

 },

 // Stage 2: Group documents by category and sum each categories likes

 {

 $group: { _id: "$category", totalLikes: { $sum: "$likes" } }

 }

])

Aggregation $group
● This aggregation stage groups documents by the unique _id expression provided.

● Don't confuse this _id expression with the _id ObjectId provided to each document.

● db.listingsAndReviews.aggregate(

 [{ $group : { _id : "$property_type" } }]

)

● This will return the distinct values from the property_type field.

Aggregation $limit
● This aggregation stage limits the number of documents passed to the next stage.

● db.movies.aggregate([{ $limit: 1 }])

● This will return the 1 movie from the collection.
●

(data from -"sample_mflix" database loaded from our sample data in the Intro to Aggregations section -
W3Schools)

https://www.w3schools.com/mongodb/mongodb_aggregations_intro.php

Aggregation $project
● This aggregation stage passes only the specified fields along to the next aggregation stage.

● Same projection that is used in the find method.

● This will return the documents but only include the specified fields.

● _id field is also included unless specifically excluded.

● We can use 1 to include a field and 0 to exclude a field

Aggregation $project
db.restaurants.aggregate([

 { $project: {

 "name": 1,

 "cuisine": 1,

 "address": 1

 }

 },

 { $limit: 5

 }

])

Aggregation $sort
● This aggregation stage groups sorts all documents in the specified sort order.

● Remember that each stage will only work on the documents that the previous stage provides.

● This will return the documents sorted in descending order by the accommodates field.

● Sort order can be chosen using -1 or 1.

Aggregation $sort
db.listingsAndReviews.aggregate([

 { $sort: { "accommodates": -1 }

 },

 { $project: {

 "name": 1,

 "accommodates": 1

 } },

 {

 $limit: 5

 }

])

Aggregation $match
● This aggregation stage behaves like a find. It will filter documents that match the query provided.
● It is best to use $match early in the pipeline to help improve performance since it limits the number of documents the next stage

must process.
● This will only return documents that have the property_type of "House".

db.listingsAndReviews.aggregate([
 { $match : { property_type : "House" } },
 { $limit: 2 },
 { $project: {
 "name": 1,
 "bedrooms": 1,
 "price": 1
 }}

])

Aggregation $addFields
● This aggregation stage adds new fields to documents.
● This will return the documents along with a new field, avgGrade, which will contain the average of each

restaurants grades.score.

db.restaurants.aggregate([

 { $addFields: {

 avgGrade: { $avg: "$grades.score" }

 }

 },

 {

Aggregation $addFields
$project: {

 "name": 1,

 "avgGrade": 1

 }

 },

 {

 $limit: 5

 }

])

Aggregation $count
● This aggregation stage counts the total amount of documents passed from the previous stage.
● This will return the number of documents at the $count stage as a field called "totalChinese".

db.restaurants.aggregate([
 {
 $match: { "cuisine": "Chinese" }
 },
 {
 $count: "totalChinese"
 }

])

Data From- In this example, we are using the "sample_restaurants" database loaded from our sample data in the
Intro to Aggregations section.

https://www.w3schools.com/mongodb/mongodb_aggregations_intro.php

Aggregation $lookup
● This aggregation stage performs a left outer join to a collection in the same database.

● There are four required fields:

from: The collection to use for lookup in the same database

localField: The field in the primary collection that can be used as a unique identifier in the from collection.

foreignField: The field in the from collection that can be used as a unique identifier in the primary collection.

as: The name of the new field that will contain the matching documents from the from collection.

Aggregation $lookup
db.comments.aggregate([{ $lookup: {

 from: "movies",

 localField: "movie_id",

 foreignField: "_id",

 as: "movie_details",

 }, },

 { $limit: 1

 }])

This will return the movie data along with each comment.

Aggregation $out
● This aggregation stage writes the returned documents from the aggregation pipeline to a collection.

● This must be the last stage in the pipeline

● In the example below, The first stage will group properties by the property_type and include the name,
accommodates, and price fields for each. The $out stage will create a new collection called
properties_by_type in the current database and write the resulting documents into that collection.

Aggregation $out
db.listingsAndReviews.aggregate([

 { $group: {

 _id: "$property_type",

 properties: {

 $push: {

 name: "$name",

 accommodates: "$accommodates",

 price: "$price",

 }, },

 }, }, { $out: "properties_by_type" },

])

Thank you.
:)

