
CS383 Midterm

Name:

Start Time:

Finish Time: 

Accommodation (if applicable):

I have abided by the Honor Code. I have not discussed this test with anyone.

(Sign below)

You have 100 minutes from the time you downloaded this test until you return the completed
test.

If you take this test on separate sheets of paper, put all of the items above on your first page.

If you need more space, feel free to add extra pages. Just make sure everything is well
labelled.

All SQL Questions use the univ database (unless explicitly stated otherwise).

There are 7 questions on 12 pages in this test. As indicated in the table below some questions
have options (do either A or B). Do not answer both A and B. Also, some questions have 2
parts. Be sure to answer both parts of those questions. Especially in the SQL questions, if you
cannot devise answer the entire question, devise a partial answer and explain (1 sentence) why
your partial answer is on the part of a solution.

Question parts points

1 A or B 10

2 A or B 10

3 A or B 10

4 A (2 parts) or B (2 parts) 13

5 2 parts 13

6 A (2 parts) or B 20

7 20

Possible Points: 96

Page of 1 14

Question 1 (10 points).

Write an SQL query for either A or B

A. Find all instructors and their departments such that the name of the instructor has at least 2
instances of the character ‘a’ and the department name has at least one instance of the
character ’e’. Do not worry about capitalization.

univ=# select name, dept_name from instructor where name like '%a%a%' and dept_name
like '%e%';

 name | dept_name

--------+-----------

 Murata | Athletics

 Bawa | Athletics

(2 rows)

B. Find the names of all students who have taken the fewest of credits of any student who has
taken more than 0 credits.. (Do not hard code the number of credits into the query.)

univ=# select name, tot_cred from student where tot_cred=(select min(tot_cred) from student
where tot_cred>0);

 name | tot_cred

------------+----------

 Karlsson | 1

 Cordt | 1

 Drews | 1

 Cheah | 1

 Tyler | 1

 Lesaffre | 1

 Kashima | 1

 Mitsuhashi | 1

Page of 2 14

Question 2 (10 points).

Write an SQL query for either A or B

A. Find the number of students that have the same name as some other student. Your query
must return this number and only this number.

select count(studenta.name) from student as
studenta join student as studentb on
studenta.name=studentb.name and studenta.id!
=studentb.id;

1042

with multnames as (with namecounts as (select
name, count(*) as count from student group by
name) select name, count from namecounts where
count > 1) select sum(count) from multnames;

788

— 7 of 10

select count(name)

from student as t1

where t1.name = ANY (select name

from student as t2

where t1.id != t2.id);

788

-7 of 10

B. Find all courses such that they have a time_slot that is not defined in the time_slot table.

select distinct course_id from section where
time_slot_id not in (select time_slot_id from
time_slot);

Page of 3 14

Question 3 (10 points).

Write an SQL query for either A or B

A. Generate a table that shows, for each advisor who advises less than 30 students, the name
of each of their advisees. You may have columns in your result in addition to the advisor and
adivisee names.

with aa as (select i_id, count(*) from advisor
group by i_id having count(*)<30), bb as (select
aa.i_id, s_id from advisor, aa where
aa.i_id=advisor.i_id) select * from bb, student,
instructor where bb.i_id=instructor.id and
bb.s_id=student.id;

B. For each department, how much money is left over after taking out the salaries of all
instructors?

with aa as (select sum(salary) as ss, dept_name
from instructor group by dept_name) select
aa.dept_name, budget-ss from aa, department
where aa.dept_name=department.dept_name union
(select dept_name , budget from department where
dept_name not in (select distinct dept_name from
instructor));

 dept_name | ?column?

-------------+------------

 Psychology | 725888.94

 Geology | 307175.34

 Civil Eng. | 255041.46

 Mech. Eng. | 360724.61

 Biology | 525036.05

 Math | 777605.11

 Marketing | -125762.17

 Cybernetics | 409155.19

 English | 322686.46

Page of 4 14

 Pol. Sci. | 273585.87

 Finance | 761520.37

 Astronomy | 538183.86

 Statistics | -11720.91

 Physics | 713008.96

 Comp. Sci. | -89888.25

 Accounting | 246974.55

 History | 699140.86

 Languages | 429018.03

 Elec. Eng. | -20123.35

 Athletics | 349059.71 

Page of 5 14

Question 4 (13 points).

Write SQL for either A or B

A: You suspect two students of cheating because they always seem to take the same section
of the same course in the same semester. For this question you may assume that the students
have ids ‘336’ and ‘94257’

Part A1. (10 points) Write a query using a set operator (union, etc) that returns a list of the
course, section, year and semester of all courses that the two students have taken together.

Part A2. (3 points) Rewrite the query to show the courses that student 336 has taken without
student 94257.

(select course_id, sec_id, semester, year from
takes where id='336') intersect (select
course_id, sec_id, semester, year from takes
where id='94257');

(select course_id, sec_id, semester, year from
takes where id='336') except (select course_id,
sec_id, semester, year from takes where
id='94257');

B: You suspect that the quality of teaching varies with instructor salary. To investigate this:

Part B1: (10 points) Write an SQL function that returns the average of the lowest and highest
instructor salaries. (The answer to part B1 should start: “create or replace function …”)

Part B2: (3 points) Use the function from part B1 in the following query: Get a listing of all
courses taught by instructors whose salary is less than the average of the highest and lowest
instructor salaries. (For this part you do not need a working version of the part B1 function, just
write this query assuming you have a working version of the function.)

create or replace function avvg() returns float
as $$ with aaa as (select min(salary) as minn
from instructor), bb as (select max(salary) as
maxx from instructor) select (aaa.minn +
bb.maxx)/2 from aaa, bb $$ language SQL;

select * from instructor where salary>avvg();

Page of 6 14

Page of 7 14

Question 5 (13 points).

Part 1. (8 points) The HAVING clause of SQL is little used. So, write the following query using
HAVING in an appropriate way. In the student table, assume that dept_name indicates that
student’s major. Use the HAVING clause to create a list department and student major count of
all departments that have more than 100 students in the major.

select count(*), dept_name from student group by
dept_name having count(*)>100;

Part 2: (5 points) The HAVING clause is is fairly unique among the standard part of SQL in that
it is not actually necessary. Rewrite the query from Part 1 so that it returns exactly the same
results without using HAVING. (It is possible to not do part 1 and get full credit on part 2).

with aa as (select count(*) as cc, dept_name
from student group by dept_name) select * from
aa where cc>100;

Page of 8 14

Question 6 (20 points).

Do either A or B (put your answer on the next page)

A1: (15 points) Write an entire web page with included javascript to do the following.

• There should be an html element that starts a javascript method when the element is clicked

upon.

• The javascript function that is started should do two things:

• change the text of the clicked element to the text “clicked 1”

• start a timer that completes in 5000ms

• When the timer completes change the text of the html element to “clunked 1”

• When the html element is hit a second time (after the completion of the timer), change the

text to “clicked 2” and start the timer which, on completion (after 5000ms) changes the text
to “clunked 2”.

• “clicked 3” and “clunked 3”

• ect.

Part A2: Suppose the viewer of the page clicked on the html element a second time before the
5000ms timer competes (say after 4700ms). What happens? (What does the viewer of the
page see?) Explain. (This part supposes that you did nothing in part A1 to block the effect of
clicking on the html element while the timer is running. Hence, an answer of “nothing” is not
acceptable)

<html>

 <body>

 <button onclick="clickk()" id="gt">Button</button>

 <script>

 let cnt=0;

 function clickk() {

 cnt++;

 document.querySelector("#gt").innerHTML = `clicked $
{cnt}`;

 setTimeout(function() {

 document.querySelector("#gt").innerHTML = `clunked
${cnt}`;

 }, 5000);

 }

 </script>

 </body>

</html>

If you hit the button a second time, that will
start a second independent timer after
incrementing cnt. As a result, when the first
times completes it will change the text in the
button to “clunked 2”. When the second timer

Page of 9 14

completes, it too will change the text, but the
change will be invisible as the tet will be
changed from “clunked 2” to “clunked 2”.

B: With precision, explain what happens and why when you click on the Button1, Button2,
Button1, Button1, Button2, Button1, Button1, … in the following web page. (This page is
available at https://cs.brynmawr.edu/cs383/TEST/test1.html)

<html>

 <body>

 <button onclick="kk()">Button1</button>

 <button onclick="jj(3)">Button2</button>

 <script>

 let kk = null;

 let hh=1;

 function jj(param1) {

 let zz = hh + param1;

 kk = function() {

 console.log(`thatt ${zz++}`);

 }

 zz*=10;

 hh*=2;

 }

 </script>

 </body>

</html>

The script is initially executed in order setting kk to null, hh to 1, function jj() is defined but not
executed. kk is defined inside jj() and jj() has not been executed, so the first time Button 1 is
pushed, it tries to call kk() but since it hasn’t been defined yet there is an Uncaught TypeError:
kk is not a function. Then Button 2 is pushed and jj() is executed, so zz becomes 1+3=4, then
kk() is defined but not executed, then zz becomes 4*10=40 and h becomes 1*2=2. Then Button
1 is pressed and kk() is executed, printing zz’s current value (40) then incrementing zz. Button 1
is pressed again so kk() is executed, printing 41 and incrementing zz. Then Button 2 is pressed
so jj() is executed, setting zz to 2+3=5, then zz to 5*10=50, and hh to 2*2=4. Button 1 is
pressed so kk() is executed, printing zz (50) and incrementing zz. Button 1 is pressed again so
kk() is executed again, printing 51 and incrementing zz. 

Page of 10 14

https://cs.brynmawr.edu

Question 7 (20 points).

The following web page and node.js instruction file connects with postgres and retrieves some
information from the rocket database when you hit the “Fetch Data” button. The information
retrieved is not relevant. There are a lot of asynchronous elements in the web page and
node.js file. Identify each and explain why asynchrony is needed. One of two sentences
should be sufficient in every case.

Web page: available at: http://165.106.10.170:30045/page.html

<html>

 <script language="javascript">

 function doQuery() {

 let params = {

 method: "POST",

 headers: { 'Content-type': 'application/json'

 }}

 let uurl = "http://165.106.10.170:30045/dq1"

 params['body']=JSON.stringify({count:7, userID:3 });

 fetch(uurl, params)

 .then(function(response) {

 response.text().then(function(text) {

 let result2 = JSON.parse(text);

 console.log(result2);

 document.querySelector("#gt").innerHTML = text;

 });

 });

 }

 </script>

 <body>

<button onclick="doQuery()" name=“query">Fetch Data</button>

 <div id="gt"></div>

 </body>

</html>

Page of 11 14

http://165.106.10.170:30045/page.html

// Node.js instruction file

const path = require('path')

const express = require('express')

const { Pool } = require('pg') // connecting to postgres

const { CommandCompleteMessage, closeComplete } = require('pg-protocol/dist/
messages')

const pool = new Pool({

 user: 'dbuser',

 host: 'localhost',

 database: 'rocket',

 password: '12345678',

 port: 5432,

})

const app = express()

const port = 30045

app.use(“/", express.static(path.join(__dirname)));

function dbreq1(dberr, client, done, req, res) {

 if (dberr) {

 res.writeHead(500);

 res.end('Sorry, check with the site admin for error: ' + dberr.code +
' ..\n');

 return;

 }

 let postt = req.body;

 client.query('SELECT * from vehicle order by random() limit ' +
postt['count'], function (dberr, dbres) {

 done()

 if (dberr) {

 res.writeHead(500);

 res.end('Sorry, check with the site admin for error: ' +
dberr.code + ' ..\n');

 } else {

 res.json(dbres.rows);

 }

 });

};

app.post('/dq1', express.json({ type: '*/*' }), function (req, res) {

 pool.connect(function (dberr, client, done) {

 dbreq1(dberr, client, done, req, res);

 });

});

app.listen(port, function(error){

 if(error) throw error

 console.log(`Server created Successfully on port ${port}`);

})

Page of 12 14

Asynchronous
Element Why it is needed

doQuery
Not exactly async, but rather event-driven. This
function wraps the actions that should be taken n
response to the click event.

fetch(uurl, params)

Inside the doQuery function, no additional code is
executed below this line, as all the future work
depends on the result of this fetch operation.
This function is not precisely async, but rather it
defines things that will be async.

.then(function
(response)

The .then() clause after the fetch is necessary so
that it can wait for the result of the fetch (callback)
to be completed before it starts to work on doing
something with the response.

response.text().then
(funct ion (text) {

Similarly here, the result of the last anonymous
function to be called needs to be completed for
us to be able to handle the result. The handling of
the result involves parsing JSON. We can’t parse
the JSON until we’ve actually gotten it as a
response to the query, so we require the .then()
construct.

client.query('SELEC
T * from vehicle
order by random()
limit ' +
postt['count'],
function (dberr,
dbres) {

This line runs the query and supplies a function to
handle its result. This asynchronous element must
be used here in order to prevent node from trying
to evaluate the result of the query before it has
been returned from the server. The use of an
anonymous function to handle the result allows
this functionality.

app.listen() The function inside this gets triggered when the
listener setup is complete.

app.post()
This function also has an anonymous function to
handle the request and response. As with
doQuery above, this is not precisely async so
much as it is event driven.

pool.connect()
Used to wait for the DB to admit you. The pool has a limited
number of connections to the DB. If there are many users they
could all be in use, so you need to wait your turn to talk to the DB.

Page of 13 14

Page of 14 14

