
Map/
Reduce

Nora Steil



History of MapReduce
● Jeffrey Dean and Sanjay Ghemawat 2004
● Used by Google until 2014
● Java-based distributed execution framework

○ Map
○ Combine & Partition
○ Reduce

● Processes and generates large data sets



Important Notes
● Assume that we are using a Distributed File System
● No data movement
● Key-Value structure
● Handling machine failures
● Map and Reduce are idempotent



Step 1: Map
● Splits input “records” into (key, value) pairs
● Outputs a set of (key, value) pairs
● Groups values associated with the same key

○ Values passed to Reduce
● Input: (K, V)
● Output: (K, V)



Word Count Example - Map Step
“One a penny, two a penny, hot cross buns”

(“one”, 1), (“a”, 1), (“penny”, 1), (“two”, 1), (“a”, 1), (“penny”, 1), (“hot”, 1), 
(“cross”, 1), (“buns”, 1)





Step 2: Combine and Partition
● Combine often performed as a part of the reduce step

○ Can make reduce easier
○ Puts all data for one key in the same node

● Partition is not optional
○ Determines how to present data to reducer
○ Assigns data to a reducer

● Exchanges data between machines
● Input: (K, V) from map
● Output: (K, list(V))



Word Count Example - Combine & Partition
(K, V) input from Map: 

(“one”, 1), (“a”, 1), (“penny”, 1), (“two”, 1), (“a”, 1), (“penny”, 1), (“hot”, 1), 
(“cross”, 1), (“buns”, 1)

(K, list(V)) output to send to Reduce:

(“a”, [1,1]), (“buns”, [1]), (“cross”, [1]), (“hot”, [1]), (“one”, [1]), (“penny”, 
[1,1]), (“two”, [1])





Step 3: Reduce
● Adds up values from Combine & Partition
● Input: (K, list(V))
● Output: (K, V)
● Reduce output (K, V) is different from Map input (K, V)



Word Count Example - Reduce
(K, list(V)) input from Combine & Partition:

(“a”, [1,1]), (“buns”, [1]), (“cross”, [1]), (“hot”, [1]), (“one”, [1]), (“penny”, 
[1,1]), (“two”, [1])

(K, V) output:

(“one”, 1), (“a”, 2), (“penny”, 2), (“two”, 1), (“hot”, 1), (“cross”, 1), (“buns”, 1)





Phase Input Output

Map (K, V) (K, V)

Combine & Partition (K, V) (K, list(V))

Reduce (K, list(V)) (K, V)



Parallel Processing
● Data broken into pieces

○ Each piece processed 
simultaneously

● Faster than serial processing
● Map and Reduce both run in 

parallel
● Create copies to prevent data 

loss



Hadoop
● Library implementation of MapReduce

○ Java
● Executed on server where data resides
● Can take many formats of input files

○ Automatically breaks up some files
● Allows storing (key, value) pairs in MongoDB
● Map and Reduce functions created for programmer

○ Mapper and Reducer
● Combine() optional



Hadoop Input and Output
● Mapper and Reducer take 4 type arguments

○ Specified by programmer
○ reduce() input key same as map() output
○ reduce() input value iterable



SQL and MapReduce: Select
● One map() function
● Each row is a record

○ Outputs key value pair if row meets condition
● Reduce is not used





SQL and MapReduce: Group By & Aggregation
● Map implicitly groups keys

○ Key is attributes being grouped
○ Value is aggregated values

● Reduce implicitly aggregates
○ Apply aggregation operation on values



Group by A, B
Sum













SQL and MapReduce Summary

SQL Clause SELECT GROUP BY

map() Yes Yes

reduce() Only with GROUP BY, 
SUM(), or COUNT()

Yes



Sources
Silberschatz 10.3
https://www.tutorialscampus.com/map-reduce/algorithm.htm
https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-tuning
https://informationit27.medium.com/hadoop-mapreduce-partition-in-hadoop-
administration-fdf265cd1eaa
https://www.youtube.com/watch?v=cHGaQz0E7AU
https://medium.com/swlh/relational-operations-using-mapreduce-f49e8bd14e31

https://www.tutorialscampus.com/map-reduce/algorithm.htm
https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-tuning
https://informationit27.medium.com/hadoop-mapreduce-partition-in-hadoop-administration-fdf265cd1eaa
https://informationit27.medium.com/hadoop-mapreduce-partition-in-hadoop-administration-fdf265cd1eaa
https://www.youtube.com/watch?v=cHGaQz0E7AU
https://medium.com/swlh/relational-operations-using-mapreduce-f49e8bd14e31

