
Introduction Non Relational
DBs

KALPATHI SUBRAMANIAN
UNIVERSITY OF NORTH CAROLINA, CHARLOTTE

There’s lots of available datasets but data
can be in nasty forms… Data needs to be in
a form that is easy to access and use.

…the "growth" is in non-relational
 -- define growth

Most popular non-relational database

Mongo

RDBMS & Mongo

• A set of databases

• each database contains a set of
tables

• each table specifies a set of
columns

• each table contains a set of
rows (relations)

• each row has exactly the
columns specified by the
table

• A set of databases

• each database contains a set
of collections

• each collection contains a
set of documents

• each document is an
independent thing
• Assuming no schema

checking

Basic terms

Relational MongoDB
{  
 "_id": 007,
 "owner": "Daniel",
 "make": "Ferrari",
 "wheels": [
 { "partNo": 234819 },
 { "partNo": 281928 },
 { "partNo": 392838 },
 { "partNo": 928038 }
], 
 …
}

Relational MongoDB
{  
 "_id": 007,
 "owner": "Daniel",
 "make": "Ferrari",
 "wheels": [
 { "partNo": 234819 },
 { "partNo": 281928 },
 { "partNo": 392838 },
 { "partNo": 928038 }
], 
 …
}

Car in
Relational Database

Car in  
MongoDB

{
 "_id": ObjectId("573a1390f29313caabcd4135"),
 "title": "Blacksmith Scene",
 "plot": "Three men hammer on an anvil and pass ...",
 "cast": ["Charles Kayser", "John Ott"],
 "directors": ["William K.L. Dickson"],
 "lastupdated": "2015-08-26 00:03:50.133000000",
 "year": 1893,
 "imdb": {
 "rating": 6.2,
 "votes": 1189,
 "id": 5
 }
}

Rich, Flexible Document Model
-- it is just JSON (plus some)

Internally documents
are stored in BSON
(Binary JSON)

JSON-like

• JSON has only:

• String, number, boolean, null (and object, array)

• Mongo adds

• integers (4 or 8 byte)

• the default is float

• {"x":NumberInt("3"), "y":NumberLong("4"), "z":5}

• Date:

• {"d":new Date()}

• ObjectID

• a special 12 byte thing (every document in Mongo has an ObjectID)

Extends json

Mongo has polymorphic data
• Polymorphic data means that in one collection you have many versions of

document schema

• so, when you create a collection, you just put data in.

• {"_id": 123, "car":"ferrari", "Cylinders":8, "cid":400, "hp":450}

• {"_id":123, "car":"Tesla", "hp":300}

• Some items are missing fields

• In RDBMS null -- Mongo -- simply not there!

DB - PL mapping

• Since all Mongo data is in JSON-like container, mapping into objects is fairly
natural.

• If you have data in PostgreSQL

• export table as JSON.
•select json_agg(t) from (select * from TABLE) as t;

• What is missing??

Document-Oriented Data

Many-to-Many relations
• Consider Sakila DB and actors

• the actor table has information about the actor (name, etc)

• the film_actor table has info showing what what films an actor was in but to get the names of those files
you need to do a join.

• Mongo documents does not model this well.

• Think hard about the data .. do I need to allow querying from both directions??

• If yes, then best course is accept the duplication of data

• represent many explicitly in in each document

Person Collection
 {ID:1, Name:"Rachel", advisees:[2,3,4,5], teaches:[1,2]}
 {ID:10, Name:"Angie", advisees:[2,12,22], teaches:[2,3]}
 {ID:2, Name:"Sarah", advisors:[1,10], takes:[1,2]}
 {ID:3, Name:"Femi", advisors[1], takes:[2,4]}

Section Collection
 {section:1, dept:"A", course:123, section: 1 instructor:[1], students:[2]}

Using Mongo

• UNIX> mongosh

• test==>show dbs

• test==>use sakila

• switch to the sakila database

• create the database if it does not exist

• sakila==>show collections

• exit

Mongosh
part 2

test==> use geoff
switched to db geoff
geoff==> db.movies.insertOne({ title: "The Favourite", genres: ["Drama", "History"] })
{
 acknowledged: true,
 insertedId: ObjectId('65f0e9666407a274f80f71d5')
}
geoff==> db.movies.insertMany([{title: "Poor things"}, {genres: ["drama", "Fantasy"] }])
{
 acknowledged: true,
 insertedIds: {
 '0': ObjectId('65f0e9d66407a274f80f71d6'),
 '1': ObjectId('65f0e9d66407a274f80f71d7')
 } }
geoff==> db.movies.find({}) // select * from table;
[{
 _id: ObjectId('65f0e9666407a274f80f71d5'),
 title: 'The Favourite',
 genres: ['Drama', 'History']
 },
 { _id: ObjectId('65f0e9d66407a274f80f71d6'), title: 'Poor things' },
 {
 _id: ObjectId('65f0e9d66407a274f80f71d7'),
 genres: ['drama', 'Fantasy']
 }]
geoff==>

The things inserts are not
the same!

If the collection 'movies'
does not exist, it wll be
created in the geoff db

