Introduction Non Relational
DBs

e There’s lots of available datasets but data

can be in nasty forms... Data needs to be In
a form that is easy to access and use.

L
L[
L[

Key/Value

Non-Relational Databases

At

o

Document

L)->L]
D 9 D Key points to information

(>

Key/Value Database

Database can be partitioned

Niche problems

Relations within table

SQL statements with joins

Graph Database

O O D Data is stored per column
O O D Designed for analytics

Column Oriented
or Wide Column

Document Database

Polymorphic data structures

Obvious relationships using
embedded arrays and documents

Easy and natural representation

No complex mapping between
application data and database

Wide column stores 2.7% Document stores 10.3%

<7
Vector DBMS 0.3% ~_%4 / Graph DBMS 1.7%
Time Series DBMS 1.2% '

Spatial DBMS 0.5%

Key-value stores 5.3%
Multivalue DBMS 0.2%
Native XML DBMS 0.3%
Object oriented DBMS 0.2%
RDF stores 0.4%

Search engines 4.5%

Document stores 10%

/ Graph DBMS 1.8%

Key-value stores 5.6%
Multivalue DBMS 0.2%
Native XML DBMS 0.3%

Wide column stores 3.1%
Time Series DBMS 1%
Spatial DBMS 0.4%
Search engines 4.7%
Relational DBMS 72.4%
Object oriented DBMS 0.2%
RDF stores 0.4%

© 2024, DB-Engines.

Relational DBMS 72.1%

Popularity Changes

150

140

130

120

110

100

90

80

...the "growth" Is In non-relational
-- define growth

— Vector DBMS
— Time Series DBMS
RDF stores
Object oriented DBMS
— Key-value stores
— Document stores
— Native XML DBMS
— Multivalue DBMS
— Search engines
— Spatial DBMS
— Relational DBMS
Graph DBMS
— Wide column stores

May 2021 Sep 2021 Jan 2022 May 2022 Sep 2022 Jan 2023 May 2023 Sep 2023 Jan 2024

© 2024, DB-Engines.com

Mar

Most popular non-relational database

Rank
Feb

Mar

2024 2024 2023

1.

2.
3.
4.
5.
6.
7.
8.
O.

-
©

O P N gk WIN =

—
S

DBMS

Oracle 3

MySQL 2

Microsoft SQL Server 3
PostgreSQL E3
MongoDB g3

Redis E3

Elasticsearch

IBM Db2

Snowflake 3

SQLite 3

Database Model

Relational, Multi-model g3
Relational, Multi-model i
Relational, Multi-model &3
Relational, Multi-model g
Document, Multi-model &l
Key-value, Multi-model &3
Search engine, Multi-model g3
Relational, Multi-model &3
Relational

Relational

Score

Mar
2024

1221.06
1101.50
845.81
634.91
424.53
157.00
134.79
127.75
125.38
118.16

Feb
2024

-20.39
-5.17
-7.76

+5.50
+4.18
-3.71
-0.95
-4.47
-2.07
+0.88

Mar
2023

-40.23
-81.29
-76.20

+21.08

-34.25
-15.45

-4.28
-15.17

+10.98

-15.66

s
N =

Microsoft Access
Cassandra 2

Relational

Wide column, Multi-model &3

107.93
104.59

-5.24
-4.69

-24.13
-9.20

RDBMS & Mongo

Basic terms
* A set of databases * A set of databases
* each database contains a set of e each database contains a set
tables

of collections
* each table specifies a set of

* each collection contains a
columns

set of documents
e ecach table contains a set of

o . °
rows (relations) each document is an

independent thing
* each row has exactly the

columns specified by the * Assuming no schema
table checking

{ Collection

'_1d": 11, An organized store of
"user_id": "Eoin", documents in MongoDB,
"age": 29, usually with common
"Status": "A" fields between

} documents

Document

A way to organize
and
store data as a set of

field-value pairs

Collection

An organized store
of documents In

MongoDB, usually
with common fields
between documents

Relational M on g O D B

make {

n - n,
Ferrari _Id .
"Owner": ||Danie|",

"make": "Ferrari",
"wheels": |
{ "partNo": 234819 },
{ "partNo": 281928 },
{ "partNo": 392838 },
{ "partNo": 928038 }

],

Flat

234819

281928

392838

928038

950555

950556

950557 }

950558

Relational M on g O D B

owner make {

" 1d": 007,
"owner": "Daniel",
"make": "Ferrari",
"wheels": |
{ "partNo":1234819
{ "partNo":1281928
{ "partNo" 392838
{ "partNo" 928038

],

Daniel Ferrari

Daniel Fiat

234819

281928

392838

928038

950555

950556

950557 }

950558

Carin
Relational Database

Rich, Flexible Document Model
-- It is just JSON (plus some)

{
"_id": Objectld("573a1390f29313caabcd4135"),

"title": "Blacksmith Scene", Intern a]]y documents

"plot”: "Three men hammer on an anvil and pass ...",
"cast": ["Charles Kayser", "John Ott"], are St()r‘ed n BSON
"directors”: ["William K.L. Dickson"], .
"lastupdated": "2015-08-26 00:03:50.133000000", (Binary JSON)
"year": 1893,
"imdb": {
"rating": 6.2,
"votes": 1189,
"id": 5
}
}

JSON

Text Encoding

Human Readable

Slower Parsing
Basic Data Types

Not as efficient

BSON

Binary Encoding
Machine Readable
Fast Parsing
Advanced Data Types

Efficient

JSON:-like

Extends json

* JSON has only:
* String, number, boolean, null (and object, array)
* Mongo adds
* integers (4 or 8 byte)
* the default is float
* {"x":NumberInt("3"), "y":NumberLong('4"), "z":5}
* Date:
* {"d":new Date()}
* ObjectID

* a special 12 byte thing (every document in Mongo has an ObjectID)

Mongo has polymorphic data

* Polymorphic data means that in one collection you have many versions of
document schema

* 5o, when you create a collection, you just put data in.
* {"_id": 123, "car":"ferrari", "Cylinders":8, "cid":400, "hp":450}
* {"_id"123, "car™:"Tesla", "hp":300}
* Some items are missing fields

* In RDBMS null -- Mongo -- simply not there!

DB - PL mapping

» Since all Mongo data is in JSON-like container, mapping into objects is fairly
natural.

* If you have data in PostgreSQL

» export table as JSON.
@®sclect json_agg(t) from (select * from TABLE) as t;

* What is missing??

Document-Oriented Data

What is MongoDB (the database)?

topics_id SMALLINT(S) customer_id SMALLINT(S)
» subject VARCHAR(45) » first_name VARCHAR(45)
b » last_name VARCHAR(45)
—— e VARCHAR(S0)
TI » DOB DATE
- - » annual_spend INT(11) country_id SMALLINT(5)
I

1 > » country VARCHAR(50)
“ :t_¢ » last_update TIMESTAMP
interests_id SMALLINT(5) : o JI —’
> topic_id SMALLINT(5) : 1 T
> customer_id SMALLINT(S) * I
< 1
——————— address_id SMALLINT(5) A
» address VARCHAR(50)
» address2 VARCHAR(50) city_id SMALLINT(5)

» district VARCHAR(20) » city VARCHAR(50)

& city_id SMALLINT(5) - ———— e country_id SMALLINT(5)
» postal_code VARCHAR(10) » last_update TIMESTAMP
> customer_id SMALLINT(5) >
» location VARCHAR(10) I
idPhone Numbers SMALLINT(S) >
2 customer_id SMALLINT(5) —

» phone_number VARCHAR(20)
» Phone number_type VARCHAR(10)
>

Tabular (Relational) Data Model

Related data split across multiple records and tables

{
"id"
ObjectId("5ad88534e3632el1a35a58d00"),
"name" : {
"first" : "John", "last"
"address" : [
{ "location"
"address" : { "street"
Hatfields", "city" : "London",
"postal_code" : "SE1 8DJ"},
"geo" : { "type" : "Point", "coord"
[51.5065752,-0.109081]}},
+ {...}
1,
"dob" : ISODate("1977-04-01T05:00:00Z"),
"retirement fund" :
NumberDecimal("1292815.75")

}

"Doe" },

"work",
ll16

Document Data Model
Related data contained ina single, rich document

Object/sub-document: a one-to-one relationship

Cars Engines
| | | | {
_id owner make _id car_id power consumption)
007 Daniel Ferrari "_1d": 007'
oo | oot | r 234808 007 660 10 "owner": "Daniel”,
008 008 120 45 "make": "Ferrari",
"engine": {
OR sihe b
power": 660hp,
Cars "consumption": 10mpg
007 Daniel Ferrari 660 10 }
008 Daniel Fiat 120 45
Tabular (Relational) Data Model Document Data Model
A car as one Engine. A one-to-one relationship in The engine information is in its own

a single document or across 2 documents structure in the parent entity

Array: a one-to-many

{
Cars Wheels "_id": 007,
_id owner make _id car_id ‘owner": " Danie]: " ’
007 | Daniel @ Ferrari 234819 007 ‘make": "Ferrari",
008 Daniel Fiat 281928 007 wheels: [
{ "partNo": 234819 },
9243038 007 { "partNo": 392838 },
950555 008 { "partNo": 928038 }
}
Tabular (Relational) Data Model Document Data Model
One-to-Many relationship One-to-Many wheels

from a car to the its wheels expressed as an array

Many-to-Many relations

* Consider Sakila DB and actors
* the actor table has information about the actor (name, etc)

* the film_actor table has info showing what what films an actor was in but to get the names of those files
you need to do a join.

* Mongo documents does not model this well.
* Think hard about the data .. do I need to allow querying from both directions??
* If yes, then best course is accept the duplication of data

* represent many explicitly in in each document

Person Collection
{ID:1, Name:"Rachel", advisees:[2,3,4,5], teaches:[1,2]}
{ID:10, Name:"Angie", advisees:[2,12,22], teaches:[2,3]}
{ID:2, Name:"Sarah", advisors:[1,10], takes:[1,2]}
{ID:3, Name:"Femi", advisors[l], takes:[2,4]}

Section Collection
{section:1, dept:"A", course:123, section: 1 instructor:[1], students:[2]}

When to use which?

SOL is a good match for structured, slowly changing data

Non-relational, particularly the document model, is well suited to
polymorphic data that can change frequently

Non-relational can provide greater developer productivity as it requires
less code to translate between the database and the application

Non-relational systems are cloud-native and designed as distributed
systems

Using Mongo

UNIX> mongosh

test=—>show dbs
test=—>use sakila
* switch to the sakila database
* create the database if it does not exist

sakila==>show collections

exit

o0sh

part 2

If the collection 'movies'

does not exist, it wll be
created in the geoff db

test==> use geoff
switched to db geoff
geoff==> db.movies.insertOne({ title: "The Favourite", genres: ['Drama”, "History"] })

agfhowledged: true,
sertedld: Objectld('65f0e9666407a274180171d5")

geoff==> db.movies.insertMany([{title: "Poor things"}, {genres: ['drama”, "Fantasy"] }])

acknowledged: true,
insertedlds: {
'0": Objectld('65foeq9d66407a274180171d6"),
1: Objectld('65foegd66407a274180171d7")
i}
geoff==> db.movies.find({}) / select * from table;
[4
_id: Objectld('65f0e9666407a274180f71d5"),
title: "The Favourite/,
genres: ['Drama’, 'History']
5,
{ _id: Objectld('65foeqd66407a274f80f71d6"), title: 'Poor things'},
{
_id: Objectld('65foeqgd66407a274f80f71d7'),
genres: ['drama’, 'Fantasy' |

i
geoff==>

The things inserts are not

the same!

