
Node.js to PostgreSQL

By Ariel Shultz

What this presentation covers

● What is Node.js

● What is PostgreSQL

● Why we use Node.js & PostgreSQL

● A simple step by step example of connecting Node.js with PostgreSQL

● Asynchronous programming and using async/await

● More in depth look at the ‘pg’ package: pg.Client, pg.Pool, pg.Result

● An example application that utilizes Node.js and PostgreSQL

Understanding Node.js & PostgreSQL

What is Node.js

An open-source JavaScript runtime environment for running web applications

outside the client’s browser.

● Instead of running a web applications directly in your browser (the client

browser), Node.js allows developers to run parts of the web application on

a server.

Why do we use Node.js

Just some of the reasons:

● High performance

● A LOT of libraries and modules

● Cross-platform

What is PostgreSQL

PostgreSQL is an object-relational database management system

● Can store and manage large amounts of data in an organized and efficient

way

● Combines features of both relational databases (MySQL) and

object-oriented databases.

Node.js and PostgreSQL

Node.js and PostgreSQL can work together to build powerful web applications.

Together, they create a seamless experience for users interacting with applications.

A Simple Step-By-Step Tutorial of connecting
Node.js with PostgreSQL

Connecting Node.js with PostgreSQL

Step 1: Installing the ‘pg’ package

To create a connection to a PostgreSQL database using Node.js, we will use the ‘pg’
package.

- How to do: npm install pg (run this command in your terminal before running Node.js)

“pg is a popular Node.js library used to work with Postgres. It serves as a PostgreSQL

database driver for Node.js applications.”

Step 2: Initialize the ‘pg’ package

 Initialize the pg package in your Node.js script and get the Client from it:

Step 3: Create a PostgreSQL client object

Create a PostgreSQL client object consisting of essential PostgreSQL database

credentials:

*Replace with your actual Postgres database credentials

Step 4: Setup a connection with the database
Setup a connection with the database using the connect method with the manually

created client object (from before):

Step 5: Execute your desired SQL query

Execute your desired SQL query to get the data. You can use the query method to run

the SQL query:

Step 6: Close the connection

Close the connection after the whole work is done. Use the end method to close the

connection:

The complete code: Putting all the steps together

Output of the code:

Other operations

In the previous example, I demonstrated how you can read the data, but you can also

perform other operations on the PostgreSQL database like Insert and Update.

Let's look at examples for Inserting and Updating

 Insert statements →

Select statement VS Insert statement:

Update Statement →

The tutorial I followed:

https://tembo.io/docs/postgres_guides/connecting-to-postgres-with-nodejs

https://tembo.io/docs/postgres_guides/connecting-to-postgres-with-nodejs

Asynchronous Operations in Node.js and
PostgreSQL: Using async & await

Asynchronous
In the context of Node.js and PostgreSQL, this refers to the way in which operations

are executed without blocking the execution of other code.

Why it’s important:

● JavaScript is single-threaded, meaning it can only do one thing at a time

● So, asynchronous operations allow JavaScript to perform multiple tasks

simultaneously without waiting for each task to finish before moving onto the

next one.

● Async operations keep the program responsive and efficient by allowing it to

multitask effectively

Understanding async/await in Node.js
Async/await is a feature in Node.js that makes its easier to manage tasks that take time, like
waiting for a response from an API.

Async/await is a more readable and straightforward syntax for writing asynchronous code in JavaScript
that you can incorporate into your Node.js code.

● async is used in a function’s signature →
● await is used within an async function and can be used for connecting to a PostgreSQL

database and executing a query →

Example of asynchronous calls from Node.js to
PostgreSQL
Consider an online marketplace platform like eBay:

User interaction: a user visits the eBay webpage and navigates to ‘Electronics’

Asynchronous Database Query: An asynchronous database query is made to fetch

the product listings from the PostgreSQL database.

At this point: The Node.js application detects the users request to navigate to the

‘Electronics’ page and will try to retrieve and display the electronic products on that

webpage.

Simplified breakdown of applications that utilize
asynchronous operations

Simplified example code

Asynchronous call is happening:

Asynchronous call completed and the products were displayed on the Electronics page:

Back to connecting Node.js with PostgreSQL:
More in depth look at the ‘pg’ package

(pg.Client, pg.Pool, pg.Result)

pg.Client
When using ‘client.query’ you can pass various objects based on the following signature:

text: string → the raw query text (ex. ‘select * from locations’) MUST BE INCLUDED

values?: Array<any> → an array of query parameters (ex. [‘Bryn Mawr’, ‘Haverford’])

Optional

Plain text query:

The most straightforward way to send a query to the PostgreSQL database.

Refers to a SQL query expressed as a simple string of text.

Parameterized query

An SQL query where placeholders are

used to represent the values that will be

supplied at execution time. These

placeholders are then filled with the

actual values when the query is executed.

● This allows for safe and efficient

handling of user input

● Prevents SQL injection attacks

There are other ways to pass an object to client.query. More information on

this can be found here: https://node-postgres.com/apis/client

https://node-postgres.com/apis/client

pg.Pool
A class that represents a pool of client

connections to a PostgreSQL database.

● Instead of creating a new database

connection for each query, a

connection pool manages a set of

reusable connections that can be

shared among multiple queries

Create an instance

Specify connection parameters

Create a Connection to the PostgreSQL Database

pool.query
The pool.query() method allows
you to execute SQL queries
against a PostgreSQL database
using a connection from the
connection pool.

1. Acquiring Connection

2. Executing Query

3. Handle the Result

4. Release Connection

pool.connect

The pool.connect() method allows you to acquire a client connection from the
connection pool.

This method is used when you need to execute multiple queries within the same
database connection rather than using the pool.query() method for each individual
query.

1. Acquiring Connection

2. Executing Query

3. Release Connection

Acquired Connection

Disclaimer

pg.Result

Represents the result of a successfully executed query from a PostgreSQL database.

It contains information about the outcome of the query, such as the rows of data

returned by the query.

Query either
returns:

1. An error
2. The result

Can use the .rows
property to access
the results

.rowCount is one
of many other
properties you can
use. This returns
the number of
rows

result.rows
Every result will have a rows array.

● If no rows are returned → the array will be empty.

● Else the array will contain one item for each row returned from the query.

OR
ERROR MESSAGE

Row 1

Row 2

An example application that uses Node.js and
PostgreSQL: Geoff’s website

http://165.106.10.133:30006/index6.html

Let’s take a look at some snippets from
the Node.js code that makes this
webpage work

http://165.106.10.133:30006/index6.html

Code snippet 1:

What it does:
● Establishes a connection to a PostgreSQL database using a connection pool.
● Configures the pool with details such as username, host, database name, password, and

port number.
● Logs a message confirming the creation of the pool in the console.

Code snippet 2:

Code snippet 3:

Code snippet 4:

Code snippet 5:

