Node.js to PostgreSQL

By Ariel Shultz

What this presentation covers

What is Node.js

What is PostgreSQL

Why we use Node.js & PostgreSQL

A simple step by step example of connecting Node.js with PostgreSQL
Asynchronous programming and using async/await

More in depth look at the ‘pg’ package: pg.Client, pg.Pool, pg.Result
An example application that utilizes Node.js and PostgreSQL

Understanding Node.js & PostgreSQL

What is Node.js

An open-source JavaScript runtime environment for running web applications
outside the client’s browser.

e Instead of running a web applications directly in your browser (the client
browser), Node.js allows developers to run parts of the web application on
a server.

Why do we use Node.js

Just some of the reasons:

e High performance
e ALQOT of libraries and modules
e Cross-platform

What is PostgreSQL

PostgreSQL is an object-relational database management system

e Canstore and manage large amounts of data in an organized and efficient
way

e Combines features of both relational databases (MySQL) and
object-oriented databases.

Node.js and PostgreSQL

_— O
e
v

PostgreSQL Node.js

Node.js and PostgreSQL can work together to build powerful web applications.
Together, they create a seamless experience for users interacting with applications.

A Simple Step-By-Step Tutorial of connecting
Node.js with PostgreSQL

Connecting Node.js with PostgreSQL

Step 1: Installing the ‘pg’ package

To create a connection to a PostgreSQL database using Node.js, we will use the ‘pg’
package.

- How todo: npm install pg (run this command in your terminal before running Node.js)

“pgis a popular Node.js library used to work with Postgres. It serves as a PostgreSQL
database driver for Node.js applications.”

npm install pg

Step 2: Initialize the ‘pg’ package

Initialize the pg package in your Node.js script and get the Client from it:

const { Client } = require('pg');

Step 3: Create a PostgreSQL client object

Create a PostgreSQL client object consisting of essential PostgreSQL database
credentials:
const client = new Client({

user: 'username’,

password: ‘'password’,

host: 'host',

port: 'port_number’,

database: 'database_name',

Pk

*Replace with your actual Postgres database credentials

Step 4: Setup a connection with the database

Setup a connection with the database using the connect method with the manually
created client object (from before):

client.connect() =
.then(() => {
console. log('Connected to PostgreSQL
database');
})
.catch((err) => {
console.error('Error connecting to PostgreSQL

database', err);

ok

Step 5: Execute your desired SQL query

Execute your desired SQL query to get the data. You can use the query method to run
the SQL query:

client.query('SELECT x FROM customers', (err,

result) => {
if (err) {
console.error('Error executing query', err);
} else {
console. log('Query result:', result.rows);
s

1ol

Step 6: Close the connection

Close the connection after the whole work is done. Use the end method to close the
connection:

client.end()
.then(() => {
console. log('Connection to PostgreSQL closed');
})
.catch((err) => {
console.error('Error closing connection', err);

3

The complete code: Putting all the steps together

const { Client } = require("pg") el fent sconuectt)
A .then(() => {

console. log('Connected to PostgreSQL database');

const client = new Client({ client.query('select * from location;', (err, res) => {
host: 'localhost’, if (err) {

user: 'ashultz_123',

porti 5439 -

password: '12345678', 1
database: 'ashultz',

console.error('Error executing query', err);
} else {
console. log(res.rows);

client.end()
.then((() => {
console. log('Connection to PostgreSQL closed');
H)
.catch((err) => {
console.error('Error closing connection', err);
=)

3
1)
.catch((err) => {
console.error('Error connecting to PostgreSQL database', err);

Output of the code:

{
store_id: '3389',
citylocation: 'Wynnewood',
storeaddress 250 E Lancaster Ave, Wynnewood, Pennsylvania, 19096-2126',
storename: 'Target’,
distance: '2.5 miles away'

ashultz@loin:~/seniorProj$ node Example.js
Connected to PostgreSQL database
[
{
store_id: '3788'
citylocation: 'Bryn Mawr',
storeaddress: '601 W Lancaster Ave, Bryn Mawr, PA, 19010',
storename: 'ACME Markets',
distance: '0.5 miles away'
}l
{
store_id: '773',
citylocation: 'Havertown',
storeaddress: '1305 W Chester Pike, Havertown, PA, 19083',
storename: 'KINGS',
distance: '3.8 miles a
’
{
store_id: '613',
citylocation: 'Narberth',
storeaddress: '829 Montgomery Ave, Narberth, PA, 19072',
storename: 'Wegmans',
distance: '3.1 miles away'

{
store_id: '1100',
citylocation: 'Ardmore',
storeaddress: '1414 Foxfield Street, Ardmore, Pennsylvania, 19003',
storename: 'ShopRite’,
distance: '3.4 miles away'
}l
{
store_id: '3300',
citylocation: 'Haverford',
storeaddress: '718 Holly rd, Haverford, Pennsylvania, 19041',
storename: 'Walmart',
distance: '4.3 miles away'
}I
{

store_id: '2200'

citylocation King of Prussia’,

storeaddress: '170 Novy Street, King of Prussia, Pennsylvania, 19406',
storename: 'GIANT',

distance: '3.6 miles away'

5
{

store_id: '3753',

citylocation: 'Wayne',

storeaddress: '700 W Lancaster Ave, Wayne, PA, 19087',
storename: 'Whole Foods Market',

distance: '5.0 miles away'

]

Connection to PostgreSQL closed

Other operations

In the previous example, | demonstrated how you can read the data, but you can also
perform other operations on the PostgreSQL database like Insert and Update.

Let's look at examples for Inserting and Updating

Insert statements —

Select statement VS Insert statement:

client.query('SELECT %* FROM customers', (err,
result) => {

client.query(insert, values, (err, result) => {

client.connect()
.then(() => {

const insert = 'INSERT INTO employees(columnl,
column2) VALUES (valuel, value2)';
const values = ['valuel', 'value2'];

client.query(insert, values, (err, result) => {
if (err) {
console.error('Error inserting data', err);
} else {
console. log('Data inserted successfully');

b

client.end();
i
})
.catch((err) => {
console.error('Error connecting to PostgreSQL
database', err);

E)s

Update Statement —

const update = 'UPDATE employees SET columnl = valuel
WHERE column2 = value2';
const values = ['updated_value', 'criteria_value'];

client.query(update, values, (err, result) => {
if (err) {
console.error('Error updating data', err);
} else {
console. log('Data updated successfully');

}

client.end();

b

The tutorial | followed:

https://tembo.io/docs/postares quides/connecting-to-postares-with-nodejs

https://tembo.io/docs/postgres_guides/connecting-to-postgres-with-nodejs

Asynchronous Operations in Node.js and
PostgreSQL: Using async & await

Asynchronous

In the context of Node.js and PostgreSQL, this refers to the way in which operations
are executed without blocking the execution of other code.

Why it’s important:

e JavaScript is single-threaded, meaning it can only do one thing at a time

e So, asynchronous operations allow JavaScript to perform multiple tasks
simultaneously without waiting for each task to finish before moving onto the
next one.

e Asyncoperations keep the program responsive and efficient by allowing it to
multitask effectively

Understanding async/await in Node.js

Async/await is a feature in Node.js that makes its easier to manage tasks that take time, like
waiting for a response from an API.

Async/await is a more readable and straightforward syntax for writing asynchronous code in JavaScript
that you can incorporate into your Node.js code.

e asyncisused in afunction’s signature — [ECERALS function executeQuery(query) {

e awaitis used within an async function and can be used for connecting to a PostgreSQL
database and executing a query —

// Connect to the database

const client = await pool.connect();

// Execute the query

const result = await client.query(query);

Example of asynchronous calls from Node s to
PostgreSQL

Consider an online marketplace platform like eBay:

Hi! Sign in orregister Daily Deals Brand Outlet Gift Cards Help & Contact Sell Watchlist~ MyeBay~ Qv

v 7 Shopb
eb \/ qgte%o¥y<<1 Search for anything All Catego...) m Advanced

Home e~ Saved Motors Electronics Collectibles Home & Garden Fashion Toys Sporting Goods

Business & Industrial Jewelry & Watches eBayLive Refurbished

Simplified breakdown of applications that utilize
asynchronous operations

User interaction: a user visits the eBay webpage and navigates to ‘Electronics’

Hi! Signin orregister Daily Deals Brand Outlet Gift Cards Help & Contact Sell Watchlistv MyeBay - Q3 v

Shop b
eb o@toe%o¥y<Q Search for anything All Catego...) m Advanced
Home « Saved Motors - Collectibles Home & Garden Fashion Toys Sporting Goods Business & Industrial Jewelry & Watches eBaylive Refurbished

At this point: The Node.js application detects the users request to navigate to the
‘Electronics’ page and will try to retrieve and display the electronic products on that
webpage.

Asynchronous Database Query: An asynchronous database query is made to fetch
the product listings from the PostgreSQL database.

Simplified example code

queryText =

queryParams

rn result.rows;
1 (error) {
// Handle an) s that occur during the da

ctronics pr

Asynchronous call is happening:

[v

e wSaved

S D

Hi! Sign in orregister

[

@ ebay.com

X

Daily Deals Brand Outlet

Gift Cards Help & Contact

Sell Watchlist -

Shop b C
m C@thOYY Q Search for anything

Motors Electipnics

Top Categories
Computers, Tablets &
Network Hardware
Cameras & Photo

Cell Phones &
Smartphones

Cell Phone Cases,
ers & Skins

TV, Video & Home Audio
Electronics

Vehicle Electronics &
GPS

Headphones

Surveillance & Smart
Home Electronics

1
|
!
\

Collectibles

My eBay -

8 v

~
All Catego...) m Ag O Signinwi

Additional Categories

eBay Refurbished
Video Games

Video Game Consoles
Apple iPhone

PC Desktops & All-In-
One Computers

Computer Graphics
Cards

Tablets & eReaders
Laptops & Netbooks

A treat for any occasion

Home & Garden

Fashion Toys Sporting Goods

Electronics

Business & Industrial

Jewelry & Wat«

Use your Goi
tosigninto ¢

No more pass
remember. Sig
fast, simple an

Asynchronous call completed and the products were displayed on the Electronics page:

Shop by Category

Computers, Tablets & Cameras & Photo Cell Phones & Phone Cases, Covers & TV, Video & Home
Network Hardware Smartphones Skins Audio

—_—

Video Games & Vehicle Electronics Headphones Surveillance & Smart eBay Refurbished - Up
Consoles Home Devices to 70% off tech and...

Back to connecting Node.Js with PostgreSQL.:
More in depth look at the ‘pg’ package
(pg.Client, pg.Pool, pg.Result)

pg.Client
When using ‘client.query’ you can pass various objects based on the following signature:

client.query(text: string, values?: any[])

text: string — the raw query text (ex. ‘select * from locations’) MUST BE INCLUDED

values?: Array<any> — an array of query parameters (ex. ['Bryn Mawr’, ‘Haverford’])
Optional

Plain text query:

The most straightforward way to send a query to the PostgreSQL database.

Refers to a SQL query expressed as a simple string of text.

const result = await client.query('SELECT * FROM users');

async function getUsersByCity(city) {
try {
// Connect to the PostgreSQL database

I
await client.connect();

Parameterized query

// Define the parameterized query with a placeholder for the city
const query = 'SELECT * FROM users WHERE city =H$1};

An SQL query Where placehOIderS are // Execute the parameterized query with the provided value for the city
. const result = await client.query(query, [city]);
used to represent the values that will be
Supplied at execution time. These // Output the rows returned by the query
. nsole.log(result.rows);
placeholders are then filled with the o el

actual values when the query is executed. e s R N R ek
} finally {

° ThiS a”OWS for Safe and efﬁCient // Close the connection to the PostgreSQL database
handling of user input

e Prevents SQL injection attacks

await client.end();

// Example usage of the function with a specific city
UsersByCity('New York');

There are other ways to pass an object to client.query. More information on
this can be found here: https://node-postgres.com/apis/client

https://node-postgres.com/apis/client

pg.Pool

) PostgreSQL
A class that represents a pool of client
connections to a PostgreSQL database. e "
e |nstead of creating a new database Connection > .

Pool

connection for each query, a |
Pool size =3 N Postgres worker
process

connection pool manages a set of
reusable connections that can be
shared among multiple queries

4’_’% Postgres worker
process

With Connection Pool

Create a Connection to the PostgreSQL Database

const { Pool } = require('pg")

const pool = new Pool({
host: 'localhost’,
user: ‘'ashultz_123°',
port: '5432°',
password: '12345678',
database: 'ashultz',

});

// Execute a SQL query using the pool
pool.query('SELECT * FROM users',|(err, res) |=> {

pool.query if (err) {
The pool.query() method allows console.error('Exrror executing query:', err);
you to execute SQL queries Jrelsen{

against a PostgreSQL database
using a connection from the
connection pool.

console.log('Query result:', res.rows);

I 1. Acquiring Connection I

// Release the client back to the pool

|2.ExecutingQuery I // This is important to avoid leaking connections

I 3. Handle the Result I

4. Release Connection

pool.connect

The pool.connect() method allows you to acquire a client connection from the
connection pool.

This method is used when you need to execute multiple queries within the same
database connection rather than using the pool.query() method for each individual

query.

I1.AcquiringConnection I

I 2. Executing Query I

Acquired Connection

3. Release Connection

constyclient = await|pool.connect()]|
await [client).query('SELECT Now()')]
client.release

Disclaimer

I You must release a client when you are finished with it.

If you forget to release the client then your application will quickly exhaust available,
idle clients in the pool and all further calls to pool.connect will timeout with an

error or hang indefinitely if you have connectionTimeoutMillis configured to 0.

pg.Result

Represents the result of a successfully executed query from a PostgreSQL database.

It contains information about the outcome of the query, such as the rows of data
returned by the query.

®// Execute the query
const result = await client.query('SELECT x FROM location;"')

console. log(result.rows)

pool.query('SELECT * FROM users', | (err,[iresult) => {
if (err) {
ole.error('Exrror executing query:', err);
} else {
// The query was executed successfully
// Access the rows of data returned by the query

const rows = result.rows;

// Output the rows of data
s5ole.log('Query result:');
.forEach(xrow => {

nsole.log(row);

// Access other properties of the result object if needed
const rowCount =(result.rowCount;

onsole.log('Number of rows:', rowCount);

Query either
returns:

1. Anerror
2. Theresult

Can use the .rows
property to access

the results

.rowCount is one
of many other
properties you can
use. This returns
the number of
rows

result.rows console. log(result. rows)

Every result will have a rows array.

e Ifnorows arereturned — the array will be empty.
e Else the array will contain one item for each row returned from the query.

/home/ashultz/seniorProj/node_modules/pg/lib/client.js:526
Error.captureStackTrace(err)

store_id: '3788',
citylocation: 'Bryn Mawr',
storeaddress: '601 W Lancaster Ave, Bryn Mawr, PA, 19010', a1 -proces S

at async executeQuery

storename: 'ACME Markets', length: 108,

severity: 'ERROR',

distance: '0.5 miles away' code: 1azp0l,
etail: ur
hint: unde !
position:
internalPositi undefined,

store_id: '773', inderines, ERROR MESSAGE
citylocation: 'Havertown',

storeaddress: '1305 W Chester Pike, Havertown, PA, 19083',

storename: 'KINGS', L nts el e

distance: '3.8 miles away' ine: '1381', ’

routine: ‘'parserOpenTable’

" does not exist

An example application that uses Node.Js and
PostgreSQL: Geoff's website

CS383 -- Node port regsitration

Before you start using a port in Node, check here and register your use.

Port

Name
Student ID
Use of Port

Click here ko see the node.js code underlying this page
\ Let’s take a look at some snippets from
the Node.js code that makes this

webpage work _
http://165.106.10.133:30006/index6.html

http://165.106.10.133:30006/index6.html

Code snippet 1:

// Connection to Postgres

// I use a "connection pool" to guarantee that postgres does not get overwhelmed. Certainly overkill ...

const { Pool } = require('pg') // connecting to postgres
const { CommandCompleteMessage, closeComplete } = require('pg-protocol/dist/messages')
const pool = new Pool({

user: 'dbuser',

host: 'localhost',

database: 'ports',

password: '12345678',

port: 5432,

})

console.log("Created pool ", pool)

What it does:
e Establishes a connection to a PostgreSQL database using a connection pool.

e Configures the pool with details such as username, host, database name, password, and

port number.
e Logsamessage confirming the creation of the pool in the console.

Code snippet 2:

// This actually reserves a port for your use (using the postgres connection pool)
async function poolReserve(req, res) {
let client = null;
try {
client = await pool.connect();
console.log("dbres");
postt = req.body // read the request body into a variable postt
// postt will be filled with key-value paris sent in by the source web page
console.log(postt)

if (postt['port'] > 1024 && postt['port'] < 62000) {
console.log("Insert into DB then run return table")
// next check that id of requester is legit
let dbresq = await client.query("select student_id from auth_ids where student_id = $1;", [postt['studid']])
if (dbresqg.rows.length != 1) {
// if the query returns anything other than exactly one row there is a problem
res.writeHead(500);
// always return something in JSON format as the web page expects that
res.end('{"error":"Sorry, the id is not authorized "}');
return

Code snippet 3:

// then check that the port is not already in use
let dbresqg2 = await client.query("select username, port number from registered where port number = $1;", [postt['port']])
if (dbresg2.rows.length != 0) {

// if the query returns anything other than exactly one row there is a problem

res.writeHead(500);

res.end('{"error":"Sorry, port ' + postt['port'] + ' is already reserved by

+ dbresq2.rows[0]['username'] +'"}');

return
}
// now we add the port into the database.
let iString = "insert into registered(username, port_number, student_id, used for) values($1l, $2, $3, $4);"
argggs = [postt['uname'], postt['port'], postt['studid'], postt['portuse']]

console.log(iString, argggs)

await client.query(iString, argggs);

// do not even look at the response, it is not significant on insert
// but probably shouldcheck for errors

Code snippet 4:

// finally get a list of the registered ports and return that
const dbres = await client.query("SELECT port_number as \"port number\", username, to_char(created, 'MM/DD/YYYY') as \"date
reserved\", used_for as usage from registered order by port_number")

//console.log(dbres)

const jsonContent = JSON.stringify(dbres);

res.end(jsonContent);
} else if (postt['port'] >= 0) {

res.writeHead(500);

res.end('{"error":"The port must be greater than 1024 and less than 62000 -- you tried ' + postt['port'] + '"}');
} else {
//returnTable(client, res, false);

} catch (err) {
console.error('something bad has happened!!!', err.stack)
res.writeHead(500);
res.end('{"error":"Sorry, checkkkk with the site admin for error: ' + err.code + '"}');
} finally {
if (client != null) {
client.release()

}

Code snippet 5:

// just get a list of the regisered ports
async function poolTable(req, res) {
let client = null;
try {
client = await pool.connect();
const dbres = await client.query("SELECT port_number as \"port number\", username, to_char(created, 'MM/DD/YYYY') as \"date
reserved\", used_for as usage from registered order by port_number")
//console.log(dbres)
const jsonContent = JSON.stringify(dbres);
res.end(jsonContent);
} catch (err) {
console.log(err);
} finally {
if (client != null) {
client.release();

}

