
Basic SQL Queries (UML
diagrams?) ch 3.3-3.4

By Leo Gordon

NOTE

A very good chunk of the examples and text are ripped
verbatim from the textbook. All of the images are provided in
chapters 3.2-3.4 of the textbook.

Vocabulary

Relation: a table

Tuple: a row in a table

Attribute: a column in a table

UML diagram

A brief note on “DROP TABLE;”

DONT!
DONT!
DONT!

Basic SQL queries (ch 3.3)

"The basic structure of an SQL query consists of
three clauses: select, from, and where.”

A simple query (ch. 3.3.1)

Let us consider a simple query using our university example, “Find the names of
all instructors.”

Instructor names are found in the instructor relation, so we put that relation in
the from clause. The instructor’s name appears in the name attribute, so we
put that in the select clause.

Figure 3.2

Queries and duplicates

Consider the following query:

Duplicates!!!

Removes duplicates

Explicitly keep duplicates

Arithmetic operations

“The select clause may also contain arithmetic expressions involving the operators
+, −, ∗, and / operating on constants or attributes of tuples.”

“This shows what would result if we gave a 10% raise to each instructor; note,
however, that it does not result in any change to the instructor relation”

Where

Consider an example where we want to find all the computer science professors
who have a salary greater than 70k:

SQL allows the use of the logical connectives and, or, and not in the where
clause.

SQL also allows the use of the comparison operators: <, <=, >, >=, =, and <>.

Where lets us filter data in the from clause when a specific condition is met.

(ch 3.3.2) Query on multiple relations

‘Suppose we want to answer the query “Retrieve the names of all instructors,
along with their department names and department building name.”’

In our instructor relation, we have an attribute dept_name but no building

However, we do have this attribute in our department relation

Where instructor.dept_name =
department.dept_name is a join condition,
will talk about why

Cartesian products using from

“The from clause by itself defines a Cartesian product of the relations listed in the
clause.”

Result of:
SELECT instructor.ID, … ,teaches.year
FROM instructor, teaches;

Using where to filter the cartesian product

Recall:

What this is really saying is make
the Cartesian product and only
keep the examples where the
dept_names are equal!!

Additional basic operators (Ch 3.4.1) –rename

Question: why would we want
to rename the relations in a
query?

Textbook quote

“First, two relations in the from clause may have attributes
with the same name, in which case an attribute name is
duplicated in the result. Second, if we use an arithmetic
expression in the select clause, the resultant attribute does
not have a name. Third, even if an attribute name can be
derived from the base relations as in the preceding example,
we may want to change the attribute name in the result.”

rename applications:

We can use rename to clarify our attributes

We can use rename to shorten names

We can use rename to compare tuples of a relation

WHAT
DOES
THIS

MEAN?

Strings in SQL (ch 3.4.2)

● SQL specifies strings by enclosing them in single quotes
● A single quote character that is part of a string can be specified by using two

single quote characters

“It’s right” ‘It’‘s right’

In the SQL standard, string comparisons are case sensitive, but aren’t in some
implementations

SQL Standard

‘Hello’ ≠ ‘hello’

MySQL, SQL Server

‘Hello’ = ‘hello’

More Strings

● upper(s) to make a string uppercase
● lower(s) to make it lower
● “||” to concatenate
● trim(s) to remove spaces at the end of a string

“See your database system’s manual for more details on exactly what string
functions it supports”

These are all supported!

Documentation

https://www.postgresql.org/docs/current/functions-string.html

Pattern-Matching (3.4.2)

Let’s say we want to select all the classes that start with ‘Intro’ (Intro classes)

We can use the following command and the like keyword:

SELECT title FROM course WHERE title like ‘Intro%’;

We can use % to match substrings

Intro% returns all classes that start
with intro

%Intro% returns all classes with
Intro in the name

We can use _ to match any character

___ returns all 3 character strings

___% returns all strings of 3 or
more characters

Escape Sequences

We can use an escape character to solve the issue

Let’s say we store full names in a format of
Firstname_Lastname in some attribute Fullname, and we want
to find all the ‘Leo_G’s at this college

SELECT fullname FROM r WHERE fullname like ‘Leo_G’; is invalid!

SELECT fullname FROM r WHERE fullname like ‘Leo_G’;

3.4.3 & 3.4.4

We can use the asterisk (*) to select all the attributes of a relation

We can use order by to sort their tuples alphabetically

And we can use desc and asc to specify direction
“Suppose that we wish to list the
entire instructor relation in
descending order of salary. If
several instructors have the
same salary, we order them in
ascending order by name.”

between keyword (3.4.5)

We can also use not between as
opposed to between

Combining equals statements

Instead of writing individual equals statements and chaining them together, we can
construct two tuples and equate them

Relational Algebra and SQL

● SQL is defined around a relational algebra called the multiset relational
algebra, which can contain duplicates

● SELECT is not equal to the relational algebra select, it is more implicit

WHERE FROM

Handout

Handout answers

4.

SELECT name, department.dept_name, building
FROM student, department
WHERE student.dept_name =department.dept_name
AND student.name = ‘John’
ORDER BY department.dept_name asc;

1. SELECT, WHERE, FROM

2. By listing multiple relations in the
‘from’ clause

3.

