Relational Algebra (and other stuff)

Database Architecture (Centralized/Shared-Memory)

Database System Concepts - 7th Edition

- Parsing and translation 1.
- Optimization 2.
- Evaluation 3.

Database System Concepts - 7th Edition

Query Processing

about data

Relational Model

- All the data is stored in various table
 - row are related (hence the name
 - Columns of tables == attributes
- Rows in tables are (usually) identified
 Key
 - keys may be one or more column
 - there may be one than one key
- There are one or more tables in a c
- Tables my be linked (by keys)

les.	ID	name	dept_name	salary
v ralational)	22222	Einstein	Physics	95000
(relational)	12121	Wu	Finance	90000
	32343	El Said	History	60000
	45565	Katz	Comp. Sci.	75000
ed by a unique	98345	Kim	Elec. Eng.	80000
	76766	Crick	Biology	72000
	10101	Srinivasan	Comp. Sci.	65000
IC	58583	Califieri	History	62000
10	83821	Brandt	Comp. Sci.	92000
	15151	Mozart	Music	40000
	33456	Gold	Physics	87000
database	76543	Singh	Finance	80000

(a) The *instructor* table

Data Manipulation Language (DML)

- Language for accessing and updating the data organized by the appropriate data model
 - DML also known as query language
- There are basically two types of data-manipulation language
 - Procedural DML -- require a user to specify what data are needed and how to get those data.
 - Declarative DML -- require a user to specify what data are needed without specifying how to get those data.
 - SQL is a declarative DML
 - MongoDB also uses a declarative DML (but it looks fairly procedural)

Schema Diagram for University Database

Database System Concepts - 7th Edition

Relational Algebra

- Six basic operators
 - select: σ
 - project: ∏
 - union: ∪
 - set difference: -
 - Cartesian product: x
 - rename: ρ

Database System Concepts - 7th Edition

A procedural language consisting of a set of operations that take one or two relations as input and produce a new relation as their result.

Select Operation

- Notation: $\sigma_p(r)$
- *p* is called the **selection predicate**
- instructor is in the "Physics" department.

Query

σ dept_name="Physics" (*instructor*)

Result

ID	name	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

The **select** operation selects tuples that satisfy a given predicate.

Example: select those tuples of the *instructor* relation where the

Select Operation (Cont.)

We allow comparisons using

=, ≠, >, ≥. <. ≤

in the selection predicate.

We can combine several predicates into a larger predicate by using the connectives:

 \land (and), \lor (or), \neg (not)

Example: Find the instructors in Physics with a salary greater \$90,000, we write:

σ dept_name="Physics" ∧ salary > 90,000 (instructor)

- The select predicate may include comparisons between two attributes. Example, find all departments whose name is the same as their building
 - name:
 - σ_{dept_name=building} (department)

Project Operation

- left out.
- Notation:

$$\prod_{A_{1},A_{2},A_{3},...,A_{k}}$$
 (r)

- columns that are not listed
- Duplicate rows removed from result, since relations are sets

A unary operation that returns its argument relation, with certain attributes

where A_1, A_2, \dots, A_k are attribute names and r is a relation name.

The result is defined as the relation of k columns obtained by erasing the

Project Operation Example

- Example: eliminate the *dept_name* attribute of *instructor*
- Query:

 $\prod_{ID, name, salary}$ (instructor)

Result:

ID	name	salary
10101	Srinivasan	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh	80000
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

Composition of Relational Operations

- algebra expression.
- department.

[]_{name}(σ_{dept_name ="Physics"} (instructor))

operation, we give an expression that evaluates to a relation.

The result of a relational-algebra operation is relation and therefore of relational-algebra operations can be composed together into a **relational**-

Consider the query -- Find the names of all instructors in the Physics

Instead of giving the name of a relation as the argument of the projection

Cartesian-Product Operation

- information from any two relations.
- written as:

instructor X teaches

- slide)
- which the attribute originally came.
 - instructor.ID
 - teaches.ID

The Cartesian-product operation (denoted by X) allows us to combine

Example: the Cartesian product of the relations *instructor* and teaches is

We construct a tuple of the result out of each possible pair of tuples: one from the *instructor* relation and one from the *teaches* relation (see next)

Since the instructor *ID* appears in both relations we distinguish between these attribute by attaching to the attribute the name of the relation from

The instructor **X** teaches table

instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2017
			•••					
•••	•••					•••	•••	
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2017
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2018
12121	Wu	Finance	90000	10101	CS-347	1	Fall	2017
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2018
12121	Wu	Finance	90000	22222	PHY-101	1	Fall	2017
			•••					
•••	•••	•••	•••	•••	•••	•••	•••	
15151	Mozart	Music	40000	10101	CS-101	1	Fall	2017
15151	Mozart	Music	40000	10101	CS-315	1	Spring	2018
15151	Mozart	Music	40000	10101	CS-347	1	Fall	2017
15151	Mozart	Music	40000	12121	FIN-201	1	Spring	2018
15151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
15151	Mozart	Music	40000	22222	PHY-101	1	Fall	2017
•••	•••	•••	•••	•••		•••	••••	
						•••		
22222	Einstein	Physics	95000	10101	CS-101	1	Fall	2017
22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2018
22222	Einstein	Physics	95000	10101	CS-347	1	Fall	2017
22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	2018
22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2018
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
•••						•••		
•••	•••	•••	•••	•••	•••	•••	•••	

Database System Concepts - 7th Edition

Join Operation

The Cartesian-Product

instructor X teaches

- Most of the resulting rows have information about instructors who did NOT teach a particular course.
- To get only those tuples of *"instructor X teaches*" that pertain to instructors and the courses that they taught, we write:

σ instructor.id = teaches.id (instructor x teaches))

- We get only those tuples of "*instructor* X *teaches*" that pertain to instructors and the courses that they taught.
- The result of this expression, shown in the next slide

associates every tuple of instructor with every tuple of teaches.

Join Operation (Cont.)

The table corresponding to:

σ instructor.id = teaches.id (instructor x teaches))

instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
15151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
32343	El Said	History	60000	32343	HIS-351	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-101	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-319	1	Spring	2018
76766	Crick	Biology	72000	76766	BIO-101	1	Summer	2017
76766	Crick	Biology	72000	76766	BIO-301	1	Summer	2018
83821	Brandt	Comp. Sci.	92000	83821	CS-190	1	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-190	2	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-319	2	Spring	2018
98345	Kim	Elec. Eng.	80000	98345	EE-181	1	Spring	2017

PostgreSQL starting

- UNIX> psql
 - whose name is your UNIX id
 - QUIT: exit; or ctrl-d or $\langle q \rangle$
- UNIX> psql -h 127.0.0.1 -U xxx_{123} -d rocket
 - prompts for a password
 - database
 - Entry into postgres that is password based (will be useful)

• enter the postgres interpreter logging in using your UNIX id and connected to a database

• prompt looks like: gtowell=# where gtowell the the name of the DB you are connected to

• Enter posgres interpreter logged in as user xxx_123 and connected to the rocket

PostgreSQL non-SQL commands

- \backslash ? show all non-SQL commands
- $\langle q quit \rangle$
- $\backslash I$ list all databases
- $\ xxx connect to a database$
- dt list tables in database
- d xxx describe the table xxx
- $\H generate HTML table$
- There are a lot more (use $\?$ to see them all)

In other DBs (MySQL) many of these commands are in SQL syntax

• /home/USER/.psqlrc

• My .psqlrc file

\timing pset pager off

- in general, an Unix, a file of the form .*rc in your home directory is a configuration file • turn on timing so I see how long each command takes

 - turn off paging (all output to screen immediately UNIX cat vs UNIX less)
 - see https://www.digitalocean.com/community/tutorials/how-to-customize-thepostgresql-prompt-with-psqlrc-on-ubuntu-14-04

PostgreSQL init file

"schema"

• Textbook — schema is the set of tables in a database

- PostgreSQL a grouping of tables in a database.
 - every database has a default schema named public
 - Idea: permissions can be set on a per schema basis. So, allow different access to different parts of DB
 - databases may have multiple schema
 - $\dn shows the current schema$

.sql files kind of like a file containing a program

- comments are line preceded by "—" two dashes -- this is a comment
- may contain postgres specific commands
 - \c rocket
- to print a non-query

gtowell=# \echo 'hello' hello

- to use psql < aaa.sql > aaa.out
- to also show commands as they execute lacksquarepsql --echo-queries

SQL <--> relational Algebra

SELECT column [,column]*

FROM table [, table]*

JOIN tableX ON booleanExpression [AND|OR boolleanExpression]*

WHERE booleanExpression [AND|OR boolleanExpression

	projection ∏column [,column]*
	cartesian product σ (<i>table1 x table2</i>))
	cartesian product otable1.columnX=table2.columny (table1 x ta
n]*	selection o _{boolean [[&, ^] boolean]} (table)

