
Relational Algebra 
(and other stuff )



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 2

Database Architecture  
(Centralized/Shared-Memory)



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 3

Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 4

Relational Model

▪ All the data is stored in various tables.
▪ row are related  (hence the name relational)
▪ Columns of tables  == attributes
▪ Rows in tables are (usually) identified by a unique 

Key
▪ keys may be one or more columns
▪ there may be one than one key
▪ There are one or more tables in a database
▪ Tables my be linked (by keys)



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition

Data Manipulation Language (DML)

▪ Language for accessing and updating the data organized by 
the appropriate data model
• DML also known as query language

▪ There are basically two types of data-manipulation 
language
• Procedural DML --  require a user to specify what data 

are needed and how to get those data.
• Declarative DML  -- require a user to specify what data 

are needed without specifying how to get those data. 
• SQL is a declarative DML
• MongoDB also uses a declarative DML (but it looks 

fairly procedural) 



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 6

Schema Diagram for University Database



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 7

Relational Algebra

▪ A  procedural language consisting  of a set of operations that take one or 
two relations as input and produce a new relation as their result. 

▪ Six basic operators
• select: σ
• project: ∏
• union: ∪
• set difference: – 
• Cartesian product: x
• rename: ρ



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 8

Select Operation

▪ The  select operation selects tuples that satisfy a given predicate.
▪ Notation:  σ p (r)
▪ p is called the selection predicate
▪ Example: select those tuples of the instructor  relation where the 

instructor is in the “Physics” department.
• Query
  
  σ dept_name=“Physics” (instructor)
 
• Result



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 9

Select Operation (Cont.)

▪ We allow comparisons using 
                     =, ≠, >, ≥. <. ≤
       in the selection predicate. 
▪ We can combine several predicates into a larger predicate by using the 

connectives:
                   ∧ (and), ∨ (or), ¬ (not)
▪ Example: Find the instructors in Physics with a salary greater $90,000, we 

write:
  

          σ dept_name=“Physics” ∧ salary > 90,000 (instructor)
 

▪ The select predicate may  include comparisons between two attributes. 
• Example, find all departments whose name is the same as their building 

name:
•  σ dept_name=building  (department)



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 10

Project Operation

▪ A unary operation that returns its argument relation, with certain attributes 
left out.  

▪ Notation:

                  ∏ A1,A2,A3 ….Ak  (r)

where A1, A2,  …, Ak  are attribute names and r is a relation name.

▪ The result is defined as the relation of k columns obtained by erasing the 
columns that are not listed

▪ Duplicate rows removed from result, since relations are sets



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 11

Project Operation Example

▪ Example: eliminate the dept_name attribute of instructor
▪ Query: 

  

          ∏ID, name, salary (instructor) 
▪ Result: 



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 12

Composition of Relational Operations

▪ The result of a relational-algebra operation is relation  and therefore of 
relational-algebra operations can be composed together into a relational-
algebra expression.

▪ Consider  the query -- Find the names of all instructors in the Physics 
department.

 

             ∏name(σ dept_name =“Physics”  (instructor))
 

▪ Instead of giving the name of a relation as the argument of the projection 
operation, we give an expression that evaluates to a relation.



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 13

Cartesian-Product Operation

▪ The Cartesian-product operation (denoted by X)  allows us to combine 
information from any two relations.  

▪ Example: the Cartesian product of the relations instructor and teaches is 
written  as:

                instructor  X  teaches
▪ We construct a tuple of the result out of each possible pair of tuples: one 

from the instructor relation and one from the teaches relation (see next 
slide)

▪ Since the instructor ID appears in both relations we distinguish between 
these attribute by attaching to the attribute the name of the relation from 
which the attribute originally came.
• instructor.ID
• teaches.ID



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 14

The  instructor  X  teaches  table



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 15

Join Operation

▪ The Cartesian-Product 
                    instructor  X  teaches
      associates every  tuple of  instructor with every tuple of teaches.
• Most of the resulting rows have information about instructors who did 

NOT teach a particular course. 
▪ To get only those tuples of  “instructor  X  teaches “ that pertain to 

instructors and the courses that they taught, we write:
            σ instructor.id =  teaches.id  (instructor  x teaches ))
 

• We get only those tuples of “instructor  X  teaches” that pertain to 
instructors and the courses that they taught.

▪ The result of this expression, shown in the next slide



©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 16

Join Operation (Cont.)

▪ The  table corresponding to:
            σ instructor.id =  teaches.id (instructor  x teaches)) 



PostgreSQL

• UNIX> psql 

• enter the postgres interpreter logging in using your UNIX id and connected to a database 
whose name is your UNIX id 

• prompt looks like: gtowell=#  where gtowell the the name of the DB you are connected to 

• QUIT: exit; or ctrl-d or \q 

• UNIX> psql -h 127.0.0.1 -U xxx_123 -d rocket 

• prompts for a password 

• Enter posgres interpreter logged in as user xxx_123 and connected to the rocket 
database 

• Entry into postgres that is password based   (will be useful) 

starting



PostgreSQL

• \? — show all non-SQL commands 

• \q — quit 

• \l — list all databases 

• \c xxx — connect to a database 

•  \dt — list tables in database 

• \d xxx — describe the table xxx 

• \H — generate HTML table 

• There are a lot more (use \? to see them all)

non-SQL commands

In other DBs (MySQL) many of these commands are in SQL syntax



PostgreSQL

• /home/USER/.psqlrc 

• My .psqlrc file 

• in general, an Unix, a file of the form  .*rc in your home directory is a configuration file 

• turn on timing so I see how long each command takes 

• turn off paging (all output to screen immediately — UNIX cat vs UNIX less) 

• see https://www.digitalocean.com/community/tutorials/how-to-customize-the-
postgresql-prompt-with-psqlrc-on-ubuntu-14-04

init file

\timing 
\pset pager off



“schema”

• Textbook — schema is the set of tables in a database 

• PostgreSQL — a grouping of tables in a database. 

• every database has a default schema named public 

• Idea: permissions can be set on a per schema basis.   So, allow different access 
to different parts of DB 

• databases may have multiple schema 

• \dn  -- shows the current schema



.sql files

• comments are line preceded by “—“ two dashes 

• may contain postgres specific commands 

• \c rocket 

• to print a non-query  

• to use psql < aaa.sql > aaa.out 

• to also show commands as they execute

kind of like a file containing a program

-- this is a comment

gtowell=# \echo 'hello' 
hello

psql --echo-queries



SQL <--> relational Algebra 

SELECT column [,column]* projection --- ∏column [,column]*

FROM table [, table]* cartesian product -- σ (table1 x table2))

JOIN tableX ON booleanExpression [AND|OR 
boolleanExpression]*

cartesian product -- σtable1.columnX=table2.columnY (table1 x table2))

WHERE booleanExpression [AND|OR boolleanExpression]* selection --  σ boolean [[&,^] boolean](table)


