
CS383
Databases in Practice

Topics
• Databases

• SQL — PostgreSQL
• NoSQL — Mongo
• Text-only databases -- Information retrieval
• Spreadsheets

• Database access
• CRUD (create, read, update, and delete),
• ODBC (open database connectivity)
• Interface creation

• HTML & javascript
• Node.js

• Other DB topics
• transactions, concurrency, indexing
• (maybe) Big Data, High Availability

2

Course Details
• https://cs.brynmawr.edu/cs383gt

• Class website

• Lab times / Office Hours

• 165.106.10.133 -- loin.cs.brynmawr.edu

• Class server

• All software used in class is on this server

• All work will be done on this server

• Homework 1

• Lab 1

3

http://165.106.10.202/cs383

Basic SQL Queries (UML diagrams?) ch 3.3-3.4 Jan 30

More SQL ch 3.5-3.8 Jan 30

SQL Joins ch 4.1 Feb 1

JDBC / ODBC (Java, Python, …) ch 5.1 Feb 6

URI (Also get/post) Feb 8

HTML Feb 8

Intro to Javascript Feb 13

Intro to the DOM — updating DOM via javascript Feb 13

Javascript closures and first class functions Feb 15

Javascript, passing in functions for later execution / JSON Feb 15

Javascript and server communication, Feb 20

Javascript short polling, long polling and web sockets Feb 22

Linking Node.js to PostgreSQL Feb 27

Basic DDL (in PostgreSQL) ER-Modeling ch 6 Feb 29

DB Normalization ch 7.3, 7.7 Mar 5

MongoDB Queries Mar 21

MongoDB Embedded Documents Mar 21

indexing mongo Mar 26

Linking Mongo to Node Mar 28

Using Postgres as a document store (mongo equivalent) April 2

Concurrency (ch 18) in Postgres (ch 32)) April 2

B-Trees and Other data models underlying DBMS (ch 14.3,4,5) April 2

Transactions (ch 17) April 2

Sharding (ch 10.2.2 — will require considerable outside information April 4

Map/Reduce (ch 10.3) April 4

XML and queries on XML xpath, xquery (online 30)

Alternate DB models — Excel — the DB functions April 9

Alternate DB Models — Google BigTable, Apache Cassandra (ch 10.6?) April 11

Presentation
Topics

There are lots of ways to store data
• Flat text files

• fixed width fields

• Delimited, e.g., CSV, …

• Structured Text FIles

• JSON

• XML

• Binary formats

• Java Objects, C bits

• Image-based formats:

• QR

• GeoTiff, …
FILE* f = fopen("wb.bin", “r");
char c[20];
r = fwrite(c, 20, sizeof(char), f);

try (ObjectOutputStream oos = new ObjectOutputStream(
 new FileOutputStream("AA.out"))) {
 oos.writeObject(als);
 } catch (Exception ee) {
 System.err.println(ee);
 }

 27.08 50.15 98.72 57.62
 70.31 43.93 66.87 86.02
 72.18 7.41 87.81 92.04
 26.47 27.28 98.89 44.58
 14.66 37.28 93.62 61.84
 68.10 11.17 91.69 41.61

54.4,90.40,4.746,37.169050714
72.9,37.6,96.7205,51.5027943330
70.0,84.6,53.617,7.7
34.7,50.132,92.9177,17.07535291
79.9,11.06,38.20521,47.5
82.9,69.0,87.1345433,17.8180

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 6

Database Systems

▪ Contain information [about a particular enterprise]
• Collection of interrelated data
• Set of programs to access the data
• An environment that is both convenient and efficient to use
▪ Manage collections of data that are:
• Highly valuable
• Relatively large -- what is "large"
• Accessed by multiple users and applications, often at the same

time.
▪ are complex software systems whose task is to manage a [large]

collections of data.

My Mac -- 16GB RAM

My Mac -- 1TB disk

DataBases -- Why

• With databases you are not reading/writing files, rather you are asking another
process for information

• Other examples of doing this

• Advantages/Disadvantages

DataBases Types
• Relational

• relational --table-oriented -- data model

• Document store

• schema-free organization of data

• usually JSON

• Key Value stores

• store pairs of keys and values, as well as retrieve
values when a key is known

• Wide Column stores

• data records have ability to hold large numbers
of dynamic columns. Column names as well as
the record keys are not fixed (a 2d key-value
store)

Ranking various DBMS

https://db-engines.com/en/ranking

Relational Databases ranked by usage

DocumentStore Databases ranked by usage

DBMS -- in this class*

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 14

Database Applications Examples

▪ Enterprise Information
• Sales: customers, products, purchases
• Accounting: payments, receipts, assets
• Human Resources: Information about employees, salaries, payroll taxes.

▪ Manufacturing: management of production, inventory, orders, supply
chain.

▪ Banking and finance
• customer information, accounts, loans, and banking transactions.
• Credit card transactions
• Finance: sales and purchases of financial instruments (e.g., stocks and

bonds; storing real-time market data
▪ Universities: registration, grades

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 15

Issues addressed by Database Systems

▪ Data redundancy and inconsistency: data is stored in multiple file formats resulting
in duplication of information in different files

▪ Difficulty in accessing data
• Need to write a new program to carry out each new task

▪ Data isolation
• Every file is considered independently from every other file

▪ Integrity problems
• Integrity constraints (e.g., account balance > 0) become “buried” in program code

rather than being stated explicitly
• Hard to add new constraints or change existing ones

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 16

More Issues

▪ Atomicity of updates
• Failures may leave database in an inconsistent state with partial updates

carried out
• Example: Transfer of funds from one account to another should either

complete or not happen at all
▪ Concurrent access by multiple users
• Concurrent access needed for performance
• Uncontrolled concurrent accesses can lead to inconsistencies
▪ Ex: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time
▪ Security problems
• Hard to provide user access to some, but not all, data

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 17

Central Features of DBMS

▪ Feature 1: Physical Data Independence – the ability to modify the
physical schema without changing the logical schema
• Applications depend on the logical schema
• In general, the interfaces between the various levels and components

should be well defined so that changes in some parts do not seriously
influence others.

• “physical schema”
• “logical schema”

• ~ Java / OO Encapsulation
• physical == instance variables
• logical == accessor methods

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 18

DBMS interface

▪ Feature 2: Interface

▪ 2 parts
▪ Data Defintion Language
▪ what the data looks like
▪ NoSQL DBMS may not have this at all

▪ Data Manipulation Language
▪ most of CRUD

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 19

Data Definition Language (DDL)
Applies to only RDMS

▪ Specification notation for defining the database schema
Example: create table instructor ( 

 ID char(5), 
 name varchar(20), 
 dept_name varchar(20), 
 salary numeric(8,2))

▪ DDL compiler generates a set of table templates stored in a data
dictionary

▪ Data dictionary contains metadata (i.e., data about data)
• Database schema
• Integrity constraints
▪ Primary key (ID uniquely identifies instructors)

• Authorization
▪ Who can access what

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 20

Data Models

▪ A collection of tools for describing
• Data
• Data relationships
• Data semantics
• Data constraints

▪ Relational model
▪ Object-based data models (Object-oriented and Object-relational)
▪ Semi-structured data model (XML, JSON)

▪ Data models are expressed by the Data Definition Language

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition

Data Manipulation Language (DML)

▪ Language for accessing and updating the data organized by the
appropriate data model
• DML also known as query language

▪ There are basically two types of data-manipulation language
• Procedural DML -- require a user to specify what data are needed and

how to get those data.
• Declarative DML -- require a user to specify what data are needed

without specifying how to get those data.
▪ Declarative DMLs are usually easier to learn and use than are procedural

DMLs.
▪ both Postgres and Mongo have declarative DMLs

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 22

Database Architecture  
(Centralized/Shared-Memory)

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 23

Storage Manager

▪ A program module that provides the interface between the low-level data
stored in the database and the application programs and queries submitted
to the system.

▪ The storage manager is responsible to the following tasks:
• Interaction with the OS file manager
• Efficient storing, retrieving and updating of data

▪ The storage manager components include:
• Authorization and integrity manager
• Transaction manager
• File manager
• Buffer manager

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 24

Storage Manager (Cont.)

▪ The storage manager implements several data structures as part of the
physical system implementation:
• Data files -- store the database itself
• Data dictionary -- stores metadata about the structure of the database, in

particular the schema of the database.
• Indices -- can provide fast access to data items. A database index

provides pointers to those data items that hold a particular value.

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 25

Query Processor

▪ The query processor components include:
• DDL interpreter -- interprets DDL statements and records the definitions

in the data dictionary.
• DML compiler -- translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query
evaluation engine understands.
▪ The DML compiler performs query optimization; that is, it picks the

lowest cost evaluation plan from among the various alternatives.
• Query evaluation engine -- executes low-level instructions generated by

the DML compiler.

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 26

Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 27

Transaction Management

▪ A transaction is a collection of operations that performs a single logical
function in a database application

▪ Transaction-management component ensures that the database
remains in a consistent (correct) state despite system failures (e.g., power
failures and operating system crashes) and transaction failures.

▪ Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.

▪ The transaction management system can be thought of as surrounding
the Query Processor

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 28

Database Applications

▪ Two-tier architecture -- the application resides at the client machine,
where it invokes database system functionality at the server machine

▪ Three-tier architecture -- the client machine acts as a front end and does
not contain any direct database calls.
• The client end communicates with an application server, usually

through a forms interface.
• The application server in turn communicates with a database system

to access data.

Database applications are usually partitioned into two or three parts

Rare, now

You will be building one of these

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 29

Database Users

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 30

History of Database Systems

▪ Pre 1950
▪ Punch cards and Hollerith Machines

▪ 1950s and early 1960s:
• Data processing using magnetic tapes for storage
▪ Tapes provided only sequential access

• Punched cards for input
▪ Late 1960s and 1970s:
• Hard disks allowed direct access to data
• Network and hierarchical data models in widespread use
• Ted Codd defines the relational data model
▪ Would win the ACM Turing Award for this work
▪ IBM Research begins System R prototype
▪ UC Berkeley (Michael Stonebraker) begins Ingres prototype
▪ Oracle releases first commercial relational database

• High-performance (for the era) transaction processing
• Punched cards for input

1923--2003

1943--

Punch Card

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 32

History of Database Systems (Cont.)

▪ 1980s:
• Research relational prototypes evolve into commercial systems
▪ SQL becomes industrial standard

• Parallel and distributed database systems
▪ Wisconsin, IBM, Teradata

• Object-oriented database systems
• Punch cards finally die!!!!

▪ 1990s:
• Large decision support and data-mining applications
• Large multi-terabyte data warehouses
• Emergence of Web commerce

©Silberschatz, Korth and SudarshanDatabase System Concepts - 7th Edition 33

History of Database Systems (Cont.)

▪ 2000s
• Big data storage systems
▪ Google BigTable, Yahoo PNuts,
▪ “NoSQL” systems.

• Big data analysis: beyond SQL
▪ Map reduce and friends

▪ 2010s
• SQL reloaded
▪ SQL front end to Map Reduce systems
▪ Massively parallel database systems
▪ Multi-core main-memory databases

