
Information Retrieval 2
Databases of text
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Frequent Words
Frequent Number of Percentage

Word Occurrences of Total

the 7,398,934 5.9
of 3,893,790 3.1
to 3,364,653 2.7
and 3,320,687 2.6
in 2,311,785 1.8
is 1,559,147 1.2
for 1,313,561 1
The 1,144,860 0.9
that 1,066,503 0.8
said 1,027,713 0.8

Frequencies from 336,310 documents in the 1 GB TREC Volume 3 Corpus 
•  125,720,891 total word occurrences 
•  508,209 unique words



Statistical Models

• A document is typically represented by a bag of words (unordered 
words with frequencies).


• Bag = set that allows multiple occurrences of the same element.


• Is bag-of-words a good model???   How would you test??


• Leacock (personal communication)Princeton students 

• better with sentences than with alphabetizd lists 

• Conclusion: there is information lost in the “bag of words”



The Vector-Space Model

• Assume t distinct terms remain after preprocessing; call 
them index terms or the vocabulary.


• These “orthogonal” terms form a vector space.

          Dimensionality = t = |vocabulary| 


• Each term, i,  in a document or query, j, is given a real-
valued weight, wij. 

• Both documents and queries are expressed as       t-
dimensional vectors:


          dj = (w1j, w2j, …, wtj)



Graphic Representation

Example: 
D1 = 2T1 + 3T2 + 5T3 

D2 = 3T1 + 7T2 +   T3 

Q = 0T1 + 0T2 +  2T3

T3
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T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3
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• Is D1 or D2 more similar to Q? 
• How to measure the degree of 

similarity? Distance? Angle? 
Projection?



Issues for Vector Space Model

• How to determine important words in a document?

• Word sense?

• Word n-grams (and phrases, idioms,…)   terms


• How to determine the degree of importance of a term 
within a document and within the entire collection?


• How to determine the degree of similarity between a 
document and the query?


• In the case of the web, what is the collection and what are 
the effects of links, formatting information, etc.?



Vector Space
• Simplest Approach


• Represent the presence of a word in a document with 
just a 1 in the sport corresponding to the word


• Problems:


• strongly favors large documents


• Documents will all be fairly similar because the all have 
the, a, or, ... and these will tend to dominate



Term Weights: Term Frequency

• More frequent terms in a document are more important, i.e. 
more indicative of the topic.


        fij = frequency of term i in document j  

• May want to normalize term frequency (tf)  by dividing by the 
frequency of the most common term in the document:


        tfij =  fij  / maxi{fij} 
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Zipf’s Law and Indexing
• The most frequent words are poor index terms 

– they occur in almost every document 
– they usually have no relationship to the concepts and ideas represented in 

the document 

• Extremely infrequent words are poor index terms 
– may be significant in representing the document 
– but, very few documents will be retrieved when indexed by terms with 

low frequency 

• Index terms in between 
– a high and a low frequency threshold are set 
– only terms within the threshold limits are considered good candidates for 

index terms



11

Resolving Power
• Zipf (and later H.P. Luhn) postulated that the resolving power 

of significant words  reached a peak at a rank order position 
half way between the two cut-offs 

– Resolving Power: the ability of words to discriminate content

rank
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Resolving power of 
significant words

upper 
cut-off

lower 
cut-off

The actual cut-off  
are determined by  
trial and error, and  
often depend on the 
specific collection.



Term Weights:  
Inverse Document Frequency

• Terms that appear in many different documents are less indicative of overall 
topic. 

     df i = document frequency of term i   

           = number of documents containing term i  

     idfi = inverse document frequency of term i,   

           = log2 (N/ df i)  


             (N: total number of documents)


• An indication of a term’s discrimination power.


• Log used to dampen the effect relative to tf.



TF-IDF Weighting

• A typical combined term importance indicator is tf-idf weighting:


wij =  tfij idfi  =  tfij log2 (N/ dfi)  

where i is the index of the document and j is the intex of the term 

• A term occurring frequently in the document but rarely in the 
rest of the collection is given high weight.


• Many other ways of determining term weights have been 
proposed.


• Experimentally, tf-idf has been found to work well.



Computing TF-IDF -- An 
Example

Given a document containing tokens with frequencies:

    A(3), B(2), C(1)

Assume collection contains 10,000 documents and 

document frequencies of these terms are:

    A(50), B(1300), C(250)

Then:

A:  tf = 3/3;  idf = log2(10000/50) = 7.6;     tf-idf = 7.6

B:  tf = 2/3;  idf = log2 (10000/1300) = 2.9; tf-idf = 2.0

C:  tf = 1/3;  idf = log2 (10000/250) = 5.3;   tf-idf = 1.8



Similarity Measure 
Inner Product

• Similarity between vectors for the document di and query q can 
be computed as the vector inner product (a.k.a. dot product):


               sim(dj,q) = dj•q =      

    where wij is the weight of term i in document j and wiq is the weight of term 

i in the query


• For binary vectors, the inner product is the number of matched 
query terms in the document (size of intersection).


• For weighted term vectors, it is the sum of the products of the 
weights of the matched terms. 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Properties of Inner Product

• The inner product is unbounded.


• Favors long documents with a large number of unique terms.


• Measures how many terms matched but not how many terms 
are not matched.
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Cosine Similarity Measure
• Cosine similarity measures the cosine of the angle 

between two vectors. 
• Inner product normalized by the vector lengths. 
   

D1 = 2T1 + 3T2 + 5T3     CosSim(D1 , Q) = 10 / √(4+9+25)(0+0+4) = 0.81 
D2 = 3T1 + 7T2 + 1T3     CosSim(D2 , Q) =  2 / √(9+49+1)(0+0+4) = 0.13 

 Q = 0T1 + 0T2 + 2T3

θ2

t3

t1

t2

D1

D2

Q

θ1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using inner 
product.
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CosSim(dj, q) =



Simple Implementation

Convert all documents in collection D to tf-idf weighted vectors, dj, for keyword 
vocabulary V.


Convert query to a tf-idf-weighted vector q.


For each dj in D do


      Compute score sj = cosSim(dj, q)


Sort documents by decreasing score.


Present top ranked documents to the user.


Time complexity:  O(|V|·|D|)   Bad for large V & D !


|V| = 10,000; |D| = 100,000; |V|·|D| = 1,000,000,000


