
Information Retrieval 2
Databases of text

Dickens & Heaps' Law
Omitting the first few documents

0.00100

0.10000

1.00000

10.00000

1 10 100

3

Frequent Words
Frequent Number of Percentage

Word Occurrences of Total

the 7,398,934 5.9
of 3,893,790 3.1
to 3,364,653 2.7
and 3,320,687 2.6
in 2,311,785 1.8
is 1,559,147 1.2
for 1,313,561 1
The 1,144,860 0.9
that 1,066,503 0.8
said 1,027,713 0.8

Frequencies from 336,310 documents in the 1 GB TREC Volume 3 Corpus
• 125,720,891 total word occurrences
• 508,209 unique words

Statistical Models

• A document is typically represented by a bag of words (unordered
words with frequencies).

• Bag = set that allows multiple occurrences of the same element.

• Is bag-of-words a good model??? How would you test??

• Leacock (personal communication)Princeton students

• better with sentences than with alphabetizd lists

• Conclusion: there is information lost in the “bag of words”

The Vector-Space Model

• Assume t distinct terms remain after preprocessing; call
them index terms or the vocabulary.

• These “orthogonal” terms form a vector space.

 Dimensionality = t = |vocabulary|

• Each term, i, in a document or query, j, is given a real-
valued weight, wij.

• Both documents and queries are expressed as t-
dimensional vectors:

 dj = (w1j, w2j, …, wtj)

Graphic Representation

Example:
D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

Issues for Vector Space Model

• How to determine important words in a document?

• Word sense?

• Word n-grams (and phrases, idioms,…)  terms

• How to determine the degree of importance of a term
within a document and within the entire collection?

• How to determine the degree of similarity between a
document and the query?

• In the case of the web, what is the collection and what are
the effects of links, formatting information, etc.?

Vector Space
• Simplest Approach

• Represent the presence of a word in a document with
just a 1 in the sport corresponding to the word

• Problems:

• strongly favors large documents

• Documents will all be fairly similar because the all have
the, a, or, ... and these will tend to dominate

Term Weights: Term Frequency

• More frequent terms in a document are more important, i.e.
more indicative of the topic.

 fij = frequency of term i in document j

• May want to normalize term frequency (tf) by dividing by the
frequency of the most common term in the document:

 tfij = fij / maxi{fij}

	 	

10

Zipf’s Law and Indexing
• The most frequent words are poor index terms

– they occur in almost every document
– they usually have no relationship to the concepts and ideas represented in

the document

• Extremely infrequent words are poor index terms
– may be significant in representing the document
– but, very few documents will be retrieved when indexed by terms with

low frequency

• Index terms in between
– a high and a low frequency threshold are set
– only terms within the threshold limits are considered good candidates for

index terms

11

Resolving Power
• Zipf (and later H.P. Luhn) postulated that the resolving power

of significant words reached a peak at a rank order position
half way between the two cut-offs

– Resolving Power: the ability of words to discriminate content

rank

fr
eq

ue
nc

y

Resolving power of
significant words

upper
cut-off

lower
cut-off

The actual cut-off
are determined by
trial and error, and
often depend on the
specific collection.

Term Weights:
Inverse Document Frequency

• Terms that appear in many different documents are less indicative of overall
topic.

 df i = document frequency of term i

 = number of documents containing term i

 idfi = inverse document frequency of term i,

 = log2 (N/ df i)

 (N: total number of documents)

• An indication of a term’s discrimination power.

• Log used to dampen the effect relative to tf.

TF-IDF Weighting

• A typical combined term importance indicator is tf-idf weighting:

wij = tfij idfi = tfij log2 (N/ dfi)

where i is the index of the document and j is the intex of the term

• A term occurring frequently in the document but rarely in the
rest of the collection is given high weight.

• Many other ways of determining term weights have been
proposed.

• Experimentally, tf-idf has been found to work well.

Computing TF-IDF -- An
Example

Given a document containing tokens with frequencies:

 A(3), B(2), C(1)

Assume collection contains 10,000 documents and

document frequencies of these terms are:

 A(50), B(1300), C(250)

Then:

A: tf = 3/3; idf = log2(10000/50) = 7.6; tf-idf = 7.6

B: tf = 2/3; idf = log2 (10000/1300) = 2.9; tf-idf = 2.0

C: tf = 1/3; idf = log2 (10000/250) = 5.3; tf-idf = 1.8

Similarity Measure
Inner Product

• Similarity between vectors for the document di and query q can
be computed as the vector inner product (a.k.a. dot product):

 sim(dj,q) = dj•q =

 where wij is the weight of term i in document j and wiq is the weight of term

i in the query

• For binary vectors, the inner product is the number of matched
query terms in the document (size of intersection).

• For weighted term vectors, it is the sum of the products of the
weights of the matched terms. 

iq

t

i
ijww∑

=1

Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of unique terms.

• Measures how many terms matched but not how many terms
are not matched.

17

Cosine Similarity Measure
• Cosine similarity measures the cosine of the angle

between two vectors.
• Inner product normalized by the vector lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / √(4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / √(9+49+1)(0+0+4) = 0.13

 Q = 0T1 + 0T2 + 2T3

θ2

t3

t1

t2

D1

D2

Q

θ1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using inner
product.

∑ ∑

∑

= =

=•

⋅

⋅
=

⋅
t

i

t

i

t

i

ww

ww
qd
qd

iqij

iqij

j

j

1 1

22

1
)(

!!
!!

CosSim(dj, q) =

Simple Implementation

Convert all documents in collection D to tf-idf weighted vectors, dj, for keyword
vocabulary V.

Convert query to a tf-idf-weighted vector q.

For each dj in D do

 Compute score sj = cosSim(dj, q)

Sort documents by decreasing score.

Present top ranked documents to the user.

Time complexity: O(|V|·|D|) Bad for large V & D !

|V| = 10,000; |D| = 100,000; |V|·|D| = 1,000,000,000

