
Document Object Model (DOM)

Selin



What is it and what does it do?

- A web API used to build websites
- W3C standard which provides a structured representation of HTML 

documents.
- Enables programs and scripts to “dynamically” access and update the content, 

structure, and style. 
- 3 different parts:

- Core DOM (for all document types)
- XML DOM
- HTML DOM



In short…

“The HTML DOM is a standard for how to get, change, add, or delete HTML 
elements.” - W3 Schools

- Each node of the tree 
corresponds to a part (attribute, 
text, element, etc.)



Why DOM?

1. Dynamic Web Development
2. Event Handling

a. Interactive user interface

3. Accessibility and Search Engine Optimization?
a. Indexing for SEO — Why is Google getting worse?

4. Single Page Applications
a. No full page reload

“The DOM is not a programming language, but without it, the JavaScript 
language wouldn't have any model or notion of web pages, HTML documents, 
SVG documents, and their component parts.” - Mozilla Developer



DOM and Javascript

- DOM can be used with any programming language, but is most commonly 
used with JS.

- Fundamental data types:
- Document: root object
- Node: every object within the document is a node of some kind
- Element: based on Node
- NodeList: array of elements
- Attr: also a type of node, has a special interface for attributes
- NamedNodeMap



Dynamic WebDev by Event Handling

Event handlers are used to change the appearance of a website following user clicks or 
keystrokes, page reloads, browser resizing, form submission, error occurrences, video 
playing/pausing. 

Common ones:

element.addEventListener('click', function(event)

element.addEventListener('mouseover', function(event)

element.addEventListener('mouseout', function(event)

element.addEventListener('keydown', function(event)

element.addEventListener('submit', function(event)

element.removeEventListener()

onClick()



Code Example
Javascript JQuery



Evils of the Web

- Cross Site Scripting
- DOM-based XSS (type-0 XSS): Exists client-side. DOM is manipulated by attacker 

and malicious code is executed in user’s browser.
- Stored (persistent XSS): Exists server-side. Malicious script is stored in a database 

and executed to all users when the website is visited.
- Reflected: Exists client-side. Malicious script is injected through web URLs. Once 

the script is executed, it redirects or dynamically displays malicious code.

Blue-bus example



Uh-Oh! What to do to avoid?

- Input validation, sanitization
- Be careful what you’re publicly sharing

- document.location(), location.search(), etc
- Be aware of vulnerable methods

- Don’t click on weird links…





References

More detail on DOM & JS: https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

https://chat.openai.com/

https://www.linkedin.com/pulse/importance-dom-web-development-aniruddh-diwan/

On XSS:

https://portswigger.net/web-security/cross-site-scripting/dom-based

https://owasp.org/www-community/attacks/DOM_Based_XSS

https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://chat.openai.com/
https://www.linkedin.com/pulse/importance-dom-web-development-aniruddh-diwan/
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://owasp.org/www-community/attacks/DOM_Based_XSS
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html

