
 CS383 Jan 31

Basic SQL DML (no joins)
followup

Another look at how select works
• You can think of select as defining, building and refining a relation based on other relations.

• After each stage of select, there is a valid relation

• Unlikely that this is actually how the query executed internally ... Why? Do I care?

SELECT selection_list # Define what the columns in the relation will be

FROM table_list # fill in the columns from the listed tables

 # Does cross product if there are multiple tables

WHERE constraint # Select the rows in the temp table after FROM completes

 # such that the rows match the given constraint

GROUP BY columns # groups the remaining rows by the given columns

 HAVING group constraints # select the grouped rows by the constraint

ORDER BY sorting_cols # Order the remaining rows by the given columns

LIMIT count; # Limit on results

Data types Name Aliases Description

bigserial serial8 autoincrementing eight-byte integer

box rectangular box on a plane

bytea binary data ("byte array")

cidr IPv4 or IPv6 network address

circle circle on a plane

inet IPv4 or IPv6 host address

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr
MAC (Media Access Control)
address

money currency amount

path geometric path on a plane

pg_lsn PostgreSQL Log Sequence Number

point geometric point on a plane

polygon closed geometric path on a plane

smallserial serial2 autoincrementing two-byte integer

serial serial4 autoincrementing four-byte integer

text variable-length character string

time [(p)] [without time
zone]

time of day (no time zone)

tsquery text search query

In PostgreSQL (not in standard)

in SQL standard
bigint,
bit,
bit varying,
boolean,
char(n),
character varying (n),
character(n),
varchar(n),
date,
double precision,
integer,
interval,
numeric(p,d),
decimal,
real,
smallint,
time (with or without time zone),
timestamp (with or without time zone),
xml.

Null

• Every data type can have a
value or null

• ie no data -- the value is
unknown

• in DDL can specify that null
is NOT allowed

• special operator "is" for
handling null

• SQL null is not Java null

A B A = B not A = B A is B not A is B

1 1 TRUE FALSE error error

0 1 FALSE TRUE error error

1 null null null FALSE TRUE

0 null null null FALSE TRUE

null null null null TRUE FALSE

null 1 null null error error

or "A is not B"

Using alaised columns

• Recall aliased columns

• select salary as s, name from instructor;

• select salary as s, name from instructor where s>100000; /// DOES NOT WORK!!!!

• cannot use alias within the query, at least in this way.

• select salary as s, name from instructor where salary>100000;

• aliases in the output relations are not available, Aliases in subrelations are

• select salary, name from instructor, (select avg(salary) as av from instructor) as ie where salary>ie.av;

• select salary, name from instructor where salary> (select avg(salary) as av from instructor);

• select * from (select salary as s, name from instructor) as inn, (select avg(salary) as av from instructor) as ie
where inn.s>ie.av;

in the univ database

Formatting Numbers

• select s as "hello kitty", name,av::numeric(8,2) as "the average" from (select salary as
s, name from instructor) as inn, (select avg(salary) as av from instructor) as ie where
inn.s>ie.av;

• for reals, cast into numeric and specify format

• In column name alias use double quotes to get spaces

• Postgres: double quotes only on top level column names

• Realistically, I get the data into python

and column names

Grouping problems

• get list of all people who earn max salary in their department

• this query does not work

• WHY?

select max(salary), dept_name, name from instructor group by dept_name;

ERROR: column "instructor.name" must appear in the GROUP BY clause or be used in an aggregate function

LINE 1: select avg(salary), dept_name, name from instructor group by...

Grouping 2

• get list of all people who earn max salary in their department

• with aaa as (select max(salary) as maxx, dept_name from instructor group by dept_name)
select * from aaa, instructor where aaa.dept_name=instructor.dept_name and salary=maxx;

• With is often unneeded

• select * from (select max(salary) as maxx, dept_name from instructor group by
dept_name) as aaa, instructor where aaa.dept_name=instructor.dept_name and
salary=maxx;

• The more complex the query the more I like with

temporary relations the WITH clause

With and Having

• Show all departments whose average salary is greater than the university average

• University average: select avg(salary) from instructor;

• select avg(salary), dept_name from instructor group by dept_name having avg(salary) >
(select avg(salary) from instructor);

• Use with to avoid having

• alternately, to precisely explain having.

• with aaa as (select avg(salary) as avg, dept_name from instructor group by dept_name)
select * from aaa where avg>(select avg(salary) from instructor);

Or having is just feels weird ...

Sakila Database

https://codeandwork.github.io/courses/java/sqlJoins.html

Sakila database

\c[onnect] sakila

• how many rows are then in the film_actor table

• retrieve the actor id, first name and last name for all actors. Sort by last name, first name

• use the actor table

• show only 10 actors

• show only actors whose last names begin with Z

• retrieve actor id, first name, last name for all actors whose last name equal WILLIAMS or DAVIS

• retrieve all customers whose first name has 2 D.

• Get the customer ID for all customers who rented a film on July 5, 2005 (use the rental table).

• use date_part function

• from the film table, rank films by first letter, alphabetically within that

