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Announcements

Today’s lecture:
* https://inferentialthinking.com/
e Chapter 9.4 — 14 (inclusive)

Final Project
* Powerpoint template is on webpage



Course evaluations

What do you see as the major strengths of Adam Poliak in this course? What
areas do you see for improvement in instruction and/or in content?

How prepared were you to take this course? What courses, if any, would you
have found useful to take before this course? Is this course listed at the
appropriate level?

How did Adam Poliak effectively create an accessible and inclusive course
experience? What areas do you see for commendation and/or improvement in
the instructor's attention to accessibility and inclusivity?

Would you recommend this course, as taught by Adam Poliak, to other
students? Why or why not?
Enroliments Responded Response

Rate
16 0 0%

16 1 6.25%
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Outline

e Review

* Bootstrap:
* My model is better than your model?

* |s a covariate (feature) actually a strong indicator? (next
lecture)

e Normal Distribution
e Central Limit Theorem



Probability vs Statistics

Probability:

 Coming up with a view of the world then seeing if
the data matches

Statistics:
* Creating a view of the world by looking at data



Null and Alternative

The method only works if we can simulate data
under one of the hypotheses.

* Null hypothesis

A well defined chance model about how the data were
generated

* We can simulate data under the assumptions of this
model

e “Under the null hypothesis”

* Alternative hypothesis:
* A different view about the origin of the data



Steps in Assessing a Model

* Choose a statistic that will help you decide whether the
data support the model or an alternative view of the
world

* Compute the statistic from your sample

* Simulate statistic under the assumptions of the model
* Empirical distribution

* Compare observed test statistic to empirical
distribution
 If the two are not consistent => evidence against the model
* If the two are consistent => data supports the model so far



Definition of the P-value

Formal name: observed significance level

The P-value is the chance,
* Under the null hypothesis,
e That the test statistic
* |s equal to the value that was observed in the data
* Oris even further in the direction of the tail



A-B Testing

Difference in stress before vs during COVID

Observed Statistic:

* Difference in avg LIWC score in n posts before COVID vs m posts during
from a similar subreddit

Empirical distribution:
 Randomly assign n posts to before and m posts to during
 Compute difference between the two new groups

P-value

* Percent of simulated statistic that was like, or more extreme than
observed statistic



Estimation

* How do we calculate the value of an unknown
parameter?

* If you have a census (that is, the whole population):
* Just calculate the parameter and you're done

* If you don’t have a census:
* Take a random sample from the population
e Use a statistic as an estimate of the parameter



Variability of the Estimate

* One sample =>» One estimate

* But the random sample could have come out
differently

e And so the estimate could have been different

* Big question:
 How different would it be if we estimated again?



Quantifying Uncertainty

* The estimate is usually not exactly right.

* Variability of the estimate tells us something about
how accurate the estimate is:

Estimate = Parameter + Error

* How accurate is the estimate, usually?
* How big is a typical error?

* When we have a census, we can do this by
simulation



Where to Get Another Sample?

* We want to understand errors of our estimate

* Given the population, we could simulate
* ...but we only have the sample!

* To get many values of the estimate, we needed
many random samples

e Can’t go back and sample again from the
population:
* No time, no money

e Stuck?



The Bootstrap

* A technique for simulating repeated random
sampling

* All that we have is the original sample
* ... whichis large and random
* Therefore, it probably resembles the population

* So we sample at random from the original sample!
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Key to Resampling

* From the original sample,
* draw at random
* with replacement
* as many values as the original sample contained

* The size of the new sample has to be the same as
the original one, so that the two estimates are
comparable



Variability

Our results might be different based on the original
sample

How can we quantify this variability?



Confidence Intervals
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95% Confidence Interval

* Interval of estimates of a parameter
* Based on random sampling

* 95% is called the confidence level
* Could be any percent between 0 and 100
* Higher level means wider intervals

* The confidence is in the process that gives the
interval:
* It generates a “good” interval about 95% of the time



How to generate a Cl

In each bootstrap sample, compute the statistic
under the null

Create an empirical distribution of the simulated
statistic across all bootstrapped samples

95% Cl:

* lower bound: 2.5 percentile on empirical
distribution

* upper bound: 97.5 percentile on empirical
distribution






Can You Use a Cl Like This?

By our calculation, an approximate 95% confidence
interval for the average age of the mothers in the
population is (26.9, 27.6) years.

True or False:

* About 95% of the mothers in the population were
between 26.9 years and 27.6 years old.

Answer:

* False. We're estimating that their average age is in this
interval.



s This What a Cl Means?

An apljoroximate 95% confidence interval for the average
age of the mothers in the population is (26.9, 27.6) years.

True or False:

There is a 0.95 probability that the average age of

mothers in the population is in the range 26.9 to 27.6
years.

Answer:

False. The average age of the mothers in the
population is unknown but it’s a constant. It’s not
random. No chances involved



When NOT to use the Bootstrap

* if you're trying to estimate very high or very low
percentiles, or min and max

* If you're trying to estimate any parameter that’s
greatly affected by rare elements of the population

* If the probability distribution of your statistic is not
roughly bell shaped (the shape of the empirical
distribution will be a clue)

* If the original sample is very small



Using a Cl for Testing

* Null hypothesis: Population average = x
 Alternative hypothesis: Population average 7/x
 Cutoff for P-value: p%

* Method:

e Construct a (100-p)% confidence interval for the
population average

* If xis not in the interval, reject the null
* If xis in the interval, can’t reject the null



Outline

e Review

* Bootstrap:
* My model is better than your model?

* |s a covariate (feature) actually a strong indicator? (next
lecture)

e Normal Distribution
e Central Limit Theorem



How do we know if one classifier is
better than another?

Given:
e Classifier Aand B
Metric M: M(A,x) is the performance of A on testset x

0(x): the performance difference between A, B on x:
e J(x) = M(A,x) — M(B,x)

We want to know if 6(x)>0, meaning A is better than B
0(x) is called the effect size
Suppose we look and see that §(x) is positive. Are we done?

No! This might be just an accident of this one test set, or
circumstance of the experiment. Instead:



Statistical Hypothesis Testing

* Consider two hypotheses:
* Null hypothesis: A isn't better than B Hy : 6(x) <0
* Ais better than B H; : 6(x) >0

* How can we rule out H, ?
* We create a random variable X ranging over test sets

* And ask, how likely, if H, is true, is it that among these
test sets we would see the 6(x) that we did see?

* Formalized as the p-value:

P(0(X) > 0(x)|Hy is true)



Statistical Hypothesis Testing

P(0(X) > 6(x)|Hy is true)

* In our example, this p-value is the probability that we would
see 6(x) assuming H, (null is that A is not better than B).
* If Hyis true but 6(x) is huge, that is surprising! Very low
probability!
* A very small p-value means that the difference we observed
is very unlikely under the null hypothesis, and we can reject
the null hypothesis

* Very small: .05 or .01

* Aresult(e.g., “Ais better than B”) is statistically significant if
the 6 we saw has a probability that is below the threshold
and we therefore reject this null hypothesis.



Statistical Hypothesis Testing

How do we compute this probability?

For example, suppose we had created zillions of
testsets x'.
 Now we measure the value of 6(x') on each test set
e That gives us a distribution
* Now set a threshold (say .01).

e So if we see that in 99% of the test sets 6(x) > d(x')

* We conclude that our original test set delta was a real delta and
not an artifact.



Statistical Hypothesis Testing

* Two common approaches:
e approximate randomization
* bootstrap test

e Paired tests:

 Comparing two sets of observations in which each
observation in one set can be paired with an
observation in another.

* For example, when looking at systems A and B on the
same test set, we can compare the performance of
system A and B on each same observation x;



Bootstrap example

Consider a text classification example with a test set x
of 10 documents, using accuracy as metric.

Suppose these are the results of systems A and B on
X, with 4 outcomes (A & B both right, A & B both
wrong, A right/B wrong, A wrong/B right):

either A+B both correct, or

1 2 3 4 5 6 7 8 9 10 A% B% &()

X

AB AB AB AB AB AB AB AB KB AB .70 .50 .20



Bootstrap example

Now we create, many, say, b=10,000 bootstrapped test
sets x(i), each of size n = 10.

To make each x(i), we randomly select a cell from row
x, with replacement, 10 times:

1 2 3 4 5 6 7 8 9 10 A% B%

o()

AB AB AB KB AB AB AB AB AB AB .70
AB AB AB KB KB AB KB AB AB AB .60
AB AB KB AB KB AB KB AB AB AB .60

50
.60
10

20
.00
-.10




Bootstrap example

e Now we have a distribution! We can check how often A
has an accidental advantage, to see if the original 6(x)
we Saw was very common.

* Now assuming H,, that means normally we expect
o(x')=0

* So we just count how many times the d(x') we found
exceeds the expected O value by d(x) or more:

p-value(x Z 1 ( ) > O)

=1



Bootstrap example

Alas, it's slightly more complicated.

We didn’t draw these samples from a distribution with 0 mean; we
created them from the original test set x, which happens to be biased
(by .20) in favor of A.

So to measure how surprising is our observed 6(x), we actually
compute the p-value by counting how often 6(x’) exceeds the expected
value of 6(x) by 6(x) or more:

p-value(x) =



Bootstrap example

We have 10,000 test sets x(i) and a threshold of .01

And in only 47 of the test sets do we find that 6(x(i)) >
20(x)

The resulting p-value is .0047

This is smaller than .01, indicating 6 (x) is indeed
sufficiently surprising

And we reject the null hypothesis and conclude A is
better than B.



Paired bootstrap example

After Berg-Kirkpatrick et al (2012)

function BOOTSTRAP(test set x, num of samples ) returns p-value(x)

Calculate 6(x) # how much better does algorithm A do than B on x
s=0
fori= 1tobdo
forj=1tondo # Draw a bootstrap sample x\0) of size n
Select a member of x at random and add it to x(%)
Calculate §(x())  # how much better does algorithm A do than B on x(?
ss+1if S(x) > 28(x)
p-value(x) ~ ; # on what % of the b samples did algorithm A beat expectations?

return p-value(x) # if very few did, our observed 0 is probably not accidental



Outline

e Review

* Bootstrap:
* My model is better than your model?

* |s a covariate (feature) actually a strong indicator? (next
lecture)

* Normal Distribution
e Central Limit Theorem



Empirical Distribution

When we simulate the statistic under the null hypothesis,

we often see a distribution like:
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Center & Spread
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Questions/Goals

* How can we quantify natural concepts like “center”
and “variability”?

 Why do many of the empirical distributions that we
generate come out bell shaped?

* How is sample size related to the accuracy of an
estimate?



Average and the
Histogram

Copyright © 2016 Barnard College



The average (mean)

Data: 2, 3, 3,9
Average = (2+3+3+9)/4 = 4.25
* Need not be a value in the collection
* Need not be an integer even if the data are integers

e Somewhere between min and max, but not
necessarily halfway in between

e Same units as the data

* Smoothing operator: collect all the contributions in
one big pot, then split evenly



Relation to the histogram

* The average depends only on the proportions in
which the distinct values appears

* The average is the center of gravity of the histogram

* It is the point on the horizontal axis where the
histogram balances



Average as balance point

* Averageis 4.25
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Question

* What list produces this histogram?
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Question

* What list produces this histogram?
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Question

* What list produces this histogram?

35

30

1,2,2,3,3
3,4,4,5

N
w

N
o

[
w

* Average?

Percent per unit
o

W

o

Copyright © 2016 Barnard College

6
values

10

54



Question

* What list produces this histogram?
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Question

* What list produces this histogram?

1,2,2,3,3
3,4,4,5

* Average?
e 3
* Median?
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Question

* What list produces this histogram?

1,2,2,3,3
3,4,4,5

* Average?
e 3

* Median?
e 3
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Question 2

 Are the medians of these two distributions the
same or different? Are the means the same or

different? If you say “different,” then say which one
is bigger
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Answer 2

e List1
*1,2,2,3,3,3,4,4,5

e List 2
e 1,2,2,3,3,3,4,4,10

* Medians =3
 Mean(Listl1) =3
 Mean (List 2) = 3.55556



Comparing Mean and Median

* Mean: Balance point of the histogram

* Median: Half-way point of data; half the area of
histogram is on either side of median

* If the distribution is symmetric about a value, then
that value is both the average and the median.

* If the histogram is skewed, then the mean is pulled
away from the median in the direction of the tail.



Question

* Which is bigger, median or mean?
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Standard Deviation
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Defining Variability

* Plan A: “biggest value - smallest value”
e Doesn’t tell us much about the shape of the distribution

 Plan B:

* Measure variability around the mean
* Need to figure out a way to quantify this



How far from the average?

e Standard deviation (SD) measures roughly
how far the data are from their average

* SD = root mean square of deviations from average

Steps: 5 4 3 2

 SD has the same units as the data



Why use Standard Deviation

* There are two main reasons.

* The first reason:

* No matter what the shape of the distribution,
the bulk of the data are in the range “average plus or
minus a few SDs”

* The second reason:
e Relation with the bellshaped curve
e Discuss this later in the lecture



ChebyshevVv’s Inequality

Copyright © 2016 Barnard College



How big are most values?

No matter what the shape of the distribution,
the bulk of the data are in the range “average + a few
SDs”

Chebyshev’s Inequality

No matter what the shape of the distribution,
the proportion of values in the range “average + z
SDs” is

atleast1-1/z2



Chebyshev’s Bounds

the proportion of values in the range “average + z
SDs" is at least 1 - 1/z2
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Chebyshev’s Bounds

the proportion of values in the range “average + z
SDs" is at least 1 - 1/z2

average + 2 SDs atleast 1 -1/4 (75%)
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Chebyshev’s Bounds

the proportion of values in the range “average + z
SDs” is at least 1 - 1/z2

average + 2 SDs atleast 1 -1/4 (75%)
average + 3 SDs at least 1 - 1/9 (88.888...%)
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Chebyshev’s Bounds

the proportion of values in the range “average + z
SDs” is at least 1 - 1/z2

average + 2 SDs atleast 1 -1/4 (75%)
average + 3 SDs at least 1 - 1/9 (88.888...%)
average = 4 SDs at least 1 - 1/16 (93.75%)
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Chebyshev’s Bounds

the proportion of values in the range “average + z
SDs” is at least 1 - 1/z2

average + 2 SDs atleast 1 -1/4 (75%)
average + 3 SDs at least 1 - 1/9 (88.888...%)
average = 4 SDs at least 1 - 1/16 (93.75%)
average = 5 SDs at least 1 - 1/25 (96%)

True no matter what the distribution looks like
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Understanding HW Results

Statistics:

Minimum: 7.5

Maximum: 29.0

Mean: 24.55

Median: 25.0

Standard Deviation: 3.96

e At least 50% of the class had scores between 20.59
and 28.51

e At least 75% of the class had scores between 16.62
and 32.47



i




Standard Units

* How many SDs above average?

 z = (value - average)/SD
* Negative z: value below average
e Positive z: value above average
e z=0:value equal to average

e When values are in standard units:
average=0,SD =1

* Chebyshev: At least 96% of the values of z are
between -5 and 5



Question

What whole numbers are
closest to

(1) Average age

(2) The SD of ages

Age in Years

Age in Standard Units

27
33
28
23
25
33
23
25
30

27

-0.0392546
0.992496
0.132704

-0.727088
-0.383171
0.992496
-0.727088
-0.383171
0.476621

-0.0392546



Answers

(1) Average age is close to
27 (standard unit here is
close to 0)

(2) The SD is about 6 years
(standard unit at 33 is

close to
1.33-27 =6)

Age in Years

Age in Standard Units

27
33
28
23
25
33
23
25
30

27

-0.0392546
0.992496
0.132704

-0.727088
-0.383171
0.992496
-0.727088
-0.383171
0.476621

-0.0392546



The SD and the Histogram

e Usually, it's not easy to estimate the SD by looking
at a histogram.

e But if the histogram has a bell shape, then you can



The SD and Bell Shaped Curves

If a histogram is bell-shaped, then

* the average is at the center

* the SD is the distance between the average and the
points of inflection on either side



Points of Inflection
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Normal Distribution
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P(z) = e 3%, —

Equation for the normal curve

$(z) = e 7%,
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Bell Curve

an The Standard Normal Curve

0.40
0.35
0.30
#(925
0.20
0.15
0.10
0.05
0.00
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How Big are Most of the Values

No matter what the shape of the distribution,

the bulk of the data are in the range “average + a few
SDs”

If a histogram is bell-shaped, then

* Almost all of the data are in the range “average + 3
SDs



Bounds and Approximations

Percent in All Normal
Range Distributions |Distributions

Average At least 0% About 68%
+-1SD

Average At least 75% About 95%

+- 2 SDs

Average At |least About 99.73%

+- 3 SDs 88.888...%
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A “Central” Area

04s Average + 25Ds: 95% of the area

0.40
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0.30
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0.00
-4 -3 -2 -1 0 1 2 3 4

Standard Units
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Central Limit Theorem
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Central Limit Theorem

If the sample is
* large, and
* drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or
the sample average) is roughly normal



Sample Average

* We often only have a sample

* We care about sample averages because they estimate
population averages.

* The Central Limit Theorem describes how the normal
distribution (a bell-shaped curve) is connected to
random sample averages.

e CLT allows us to make inferences based on averages of
random samples



