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Announcements

Today’s lecture:
• https://inferentialthinking.com/ 
• Chapter 9.4 – 14 (inclusive)

Final Project
• Powerpoint template is on webpage



Course evaluations
What do you see as the major strengths of Adam Poliak in this course? What 
areas do you see for improvement in instruction and/or in content? 

How prepared were you to take this course? What courses, if any, would you 
have found useful to take before this course? Is this course listed at the 
appropriate level? 

How did Adam Poliak effectively create an accessible and inclusive course 
experience? What areas do you see for commendation and/or improvement in 
the instructor's attention to accessibility and inclusivity? 

Would you recommend this course, as taught by Adam Poliak, to other 
students? Why or why not? 



Why might 
this be the 
case?





Outline

• Review
• Bootstrap:

• My model is better than your model?
• Is a covariate (feature) actually a strong indicator? (next 

lecture)

• Normal Distribution
• Central Limit Theorem



Probability vs Statistics

Probability:
• Coming up with a view of the world then seeing if 

the data matches

Statistics:
• Creating a view of the world by looking at data



Null and Alternative

The method only works if we can simulate data 
under one of the hypotheses.
• Null hypothesis

• A well defined chance model about how the data were 
generated

• We can simulate data under the assumptions of this 
model
• “Under the null hypothesis”

• Alternative hypothesis:
• A different view about the origin of the data
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Steps in Assessing a Model

• Choose a statistic that will help you decide whether the 
data support the model or an alternative view of the 
world
• Compute the statistic from your sample
• Simulate statistic under the assumptions of the model 

• Empirical distribution

• Compare observed test statistic to empirical 
distribution
• If the two are not consistent => evidence against the model
• If the two are consistent => data supports the model so far
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Definition of the P-value

Formal name: observed significance level

The P-value is the chance,
• Under the null hypothesis,
• That the test statistic 
• Is equal to the value that was observed in the data
• Or is even further in the direction of the tail
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A-B Testing

Difference in stress before vs during COVID

Observed Statistic: 
• Difference in avg LIWC score in n posts before COVID vs m posts during 

from a similar subreddit

Empirical distribution:
• Randomly assign n posts to before and m posts to during
• Compute difference between the two new groups

P-value
• Percent of simulated statistic that was like, or more extreme than 

observed statistic



Estimation

• How do we calculate the value of an unknown 
parameter? 

• If you have a census (that is, the whole population): 
• Just calculate the parameter and you’re done 

• If you don’t have a census: 
• Take a random sample from the population 
• Use a statistic as an estimate of the parameter 
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Variability of the Estimate

• One sample ➜ One estimate 

• But the random sample could have come out 
differently 

• And so the estimate could have been different 

• Big question: 
• How different would it be if we estimated again? 
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Quantifying Uncertainty

• The estimate is usually not exactly right.
• Variability of the estimate tells us something about 

how accurate the estimate is:
Estimate = Parameter + Error 

• How accurate is the estimate, usually? 
• How big is a typical error? 
• When we have a census, we can do this by 

simulation 
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Where to Get Another Sample?

• We want to understand errors of our estimate 
• Given the population, we could simulate 

• ...but we only have the sample! 

• To get many values of the estimate, we needed 
many random samples 

• Can’t go back and sample again from the 
population: 

• No time, no money 

• Stuck? 
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The Bootstrap

• A technique for simulating repeated random 
sampling 

• All that we have is the original sample
• ... which is large and random
• Therefore, it probably resembles the population 

• So we sample at random from the original sample! 
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How the Bootstrap works
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Population Sample

Resamples



Why the Bootstrap works
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Population Sample

Resamples

What we wish we 
could get 

What we actually 
can get



Key to Resampling

• From the original sample, 
• draw at random 
• with replacement 
• as many values as the original sample contained 

• The size of the new sample has to be the same as 
the original one, so that the two estimates are 
comparable 
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Variability

Our results might be different based on the original 
sample

How can we quantify this variability? 



Confidence Intervals
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95% Confidence Interval

• Interval of estimates of a parameter 
• Based on random sampling 
• 95% is called the confidence level 

• Could be any percent between 0 and 100 
• Higher level means wider intervals 

• The confidence is in the process that gives the 
interval: 

• It generates a “good” interval about 95% of the time 
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How to generate a CI

In each bootstrap sample, compute the statistic 
under the null
Create an empirical distribution of the simulated 
statistic across all bootstrapped samples

95% CI:
• lower bound: 2.5 percentile on empirical

distribution
• upper bound: 97.5 percentile on empirical 

distribution



Use Methods 
Appropriately 
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Can You Use a CI Like This? 

By our calculation, an approximate 95% confidence 
interval for the average age of the mothers in the 
population is (26.9, 27.6) years. 

True or False:
• About 95% of the mothers in the population were 

between 26.9 years and 27.6 years old. 

Answer: 
• False. We’re estimating that their average age is in this 

interval. 
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Is This What a CI Means? 

An approximate 95% confidence interval for the average 
age of the mothers in the population is (26.9, 27.6) years. 

True or False:
There is a 0.95 probability that the average age of 

mothers in the population is in the range 26.9 to 27.6 
years. 

Answer:
False. The average age of the mothers in the 

population is unknown but it’s a constant. It’s not 
random. No chances involved 
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When NOT to use the Bootstrap

• if you’re trying to estimate very high or very low 
percentiles, or min and max 

• If you’re trying to estimate any parameter that’s 
greatly affected by rare elements of the population 

• If the probability distribution of your statistic is not 
roughly bell shaped (the shape of the empirical 
distribution will be a clue) 

• If the original sample is very small 
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Using a CI for Testing

• Null hypothesis: Popula@on average = x 
• Alterna`ve hypothesis: Popula@on average ≠ x 
• Cutoff for P-value: p% 
• Method: 

• Construct a (100-p)% confidence interval for the 
popula\on average 

• If x is not in the interval, reject the null 
• If x is in the interval, can’t reject the null 
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Outline

• Review
• Bootstrap:

• My model is better than your model?
• Is a covariate (feature) actually a strong indicator? (next 

lecture)

• Normal Distribution
• Central Limit Theorem



How do we know if one classifier is 
better than another?
Given:
• Classifier A and B
• Metric M: M(A,x) is the performance of A on testset x
• 𝛿(x): the performance difference between A, B on x:

• 𝛿(x) = M(A,x) – M(B,x)

• We want to know if 𝛿(x)>0, meaning A is better than B
• 𝛿(x) is called the effect size 
• Suppose we look and see that 𝛿(x)  is positive. Are we done?
• No!  This might be just an accident of this one test set, or 

circumstance of the experiment.  Instead:

Slide from Dan Jurafsky



StaSsScal Hypothesis TesSng

• Consider two hypotheses:
• Null hypothesis: A isn't better than B
• A is better than B

• How can we rule out H0 ?
• We create a random variable X ranging over test sets
• And ask, how likely, if H0 is true, is it that among these 

test sets we would see the 𝛿(x) that we did see?
• Formalized as the p-value:
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4.9 Statistical Significance Testing

In building systems we often need to compare the performance of two systems. How
can we know if the new system we just built is better than our old one? Or better than
the some other system described in the literature? This is the domain of statistical
hypothesis testing, and in this section we introduce tests for statistical significance
for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg-
Kirkpatrick et al. (2012).

Suppose we’re comparing the performance of classifiers A and B on a metric M
such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and d (x) the performance difference between A and B on x:

d (x) = M(A,x)�M(B,x) (4.19)

We would like to know if d (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on X . d (x) is called the effect size;effect size
a bigger d means that A seems to be way better than B; a small d means A seems to
be only a little better.

Why don’t we just check if d (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than Bs by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x0, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : d (x) 0
H1 : d (x)> 0 (4.20)

The hypothesis H0, called the null hypothesis, supposes that d (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets
we would encounter the value of d (x) that we found. We formalize this likelihood
as the p-value: the probability, assuming the null hypothesis H0 is true, of seeingp-value

the d (x) that we saw or one even greater

P(d (X)� d (x)|H0 is true) (4.21)

So in our example, this p-value is the probability that we would see d (x) assuming
A is not better than B. If d (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low
(unlikely to have such a large d if A is in fact not better than B). But if d (x) is very
small, it might be less surprising to us even if H0 were true and A is not really better
than B, and so the p-value would be higher.

A very small p-value means that the difference we observed is very unlikely
under the null hypothesis, and we can reject the null hypothesis. What counts as very
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Statistical Hypothesis Testing

• In our example, this p-value is the probability that we would 
see δ(x) assuming H0 (null is that A is not better than B).
• If H0 is true but δ(x) is huge, that is surprising!  Very low 

probability!
• A very small p-value means that the difference we observed 

is very unlikely under the null hypothesis, and we can reject 
the null hypothesis 

• Very small: .05 or .01 
• A result(e.g., “A is better than B”) is statistically significant if 

the δ we saw has a probability that is below the threshold
and we therefore reject this null hypothesis. 
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Statistical Hypothesis Testing

How do we compute this probability?
For example, suppose we had created zillions of 
testsets x'.

• Now we measure the value of 𝛿(x') on each test set
• That gives us a distribution
• Now set a threshold (say .01).
• So if we see that in 99% of the test sets 𝛿(x) > 𝛿(x') 

• We conclude that our original test set delta was a real delta and 
not an artifact.



Statistical Hypothesis Testing

• Two common approaches:
• approximate randomization 
• bootstrap test

• Paired tests:
• Comparing two sets of observations in which each 

observation in one set can be paired with an 
observation in another.

• For example, when looking at systems A and B on the 
same test set, we can compare the performance of 
system A and B on each same observation xi



Bootstrap example

Consider a text classification example with a test set x 
of 10 documents, using accuracy as metric.
Suppose these are the results of systems A and B on 
x, with 4 outcomes (A & B both right, A & B both 
wrong, A right/B wrong, A wrong/B right):

either A+B both correct, or 
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1 2 3 4 5 6 7 8 9 10 A% B% d ()
x AB A◆◆B AB ��AB A◆◆B ��AB A◆◆B AB ��A◆◆B A◆◆B .70 .50 .20
x(1) A◆◆B AB A◆◆B ��AB ��AB A◆◆B ��AB AB ��A◆◆B AB .60 .60 .00
x(2) A◆◆B AB ��A◆◆B ��AB ��AB AB ��AB A◆◆B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that d (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed d (x) we would in other circumstances compute the p-value by
counting over many test sets how often d (x(i)) exceeds the expected zero value by
d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� 0

⌘

However, although it’s generally true that the expected value of d (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value



Bootstrap example

Now we create, many, say, b=10,000 bootstrapped test 
sets x(i), each of size n = 10. 
To make each x(i), we randomly select a cell from row 
x, with replacement, 10 times:4.9 • STATISTICAL SIGNIFICANCE TESTING 17
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Bootstrap example

• Now we have a distribution!  We can check how often A 
has an accidental advantage, to see if the original 𝛿(x) 
we saw was very common.

• Now assuming H0, that means normally we expect 
𝛿(x')=0

• So we just count how many times the 𝛿(x') we found 
exceeds the expected 0 value by 𝛿(x)  or more:
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with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value



Bootstrap example

Alas, it's slightly more complicated.
We didn’t draw these samples from a distribution with 0 mean; we 
created them from the original test set x, which happens to be biased 
(by .20) in favor of A. 
So to measure how surprising is our observed δ(x), we actually 
compute the p-value by counting how often δ(x') exceeds the expected 
value of δ(x) by δ(x) or more: 
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1 2 3 4 5 6 7 8 9 10 A% B% d ()
x AB A◆◆B AB ��AB A◆◆B ��AB A◆◆B AB ��A◆◆B A◆◆B .70 .50 .20
x(1) A◆◆B AB A◆◆B ��AB ��AB A◆◆B ��AB AB ��A◆◆B AB .60 .60 .00
x(2) A◆◆B AB ��A◆◆B ��AB ��AB AB ��AB A◆◆B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that d (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed d (x) we would in other circumstances compute the p-value by
counting over many test sets how often d (x(i)) exceeds the expected zero value by
d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� 0

⌘

However, although it’s generally true that the expected value of d (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value



Bootstrap example

We have 10,000 test sets x(i) and a threshold of .01 
And in only 47 of the test sets do we find that δ(x(i)) ≥ 
2δ(x)
The resulting p-value is .0047 
This is smaller than .01, indicating δ (x) is indeed 
sufficiently surprising
And we reject the null hypothesis and conclude A is 
better than B. 
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function BOOTSTRAP(test set x, num of samples b) returns p-value(x)

Calculate d (x) # how much better does algorithm A do than B on x
s = 0
for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x(i) of size n
Select a member of x at random and add it to x(i)

Calculate d (x(i)) # how much better does algorithm A do than B on x(i)

s s + 1 if d (x(i)) > 2d (x)
p-value(x) ⇡ s

b # on what % of the b samples did algorithm A beat expectations?
return p-value(x) # if very few did, our observed d is probably not accidental

Figure 4.9 A version of the paired bootstrap algorithm after Berg-Kirkpatrick et al. (2012).

4.10 Avoiding Harms in Classification

It is important to avoid harms that may result from classifiers, harms that exist both
for naive Bayes classifiers and for the other classification algorithms we introduce
in later chapters.

One class of harms is representational harms (Crawford 2017, Blodgett et al. 2020),representational
harms

harms caused by a system that demeans a social group, for example by perpetuating
negative stereotypes about them. For example Kiritchenko and Mohammad (2018)
examined the performance of 200 sentiment analysis systems on pairs of sentences
that were identical except for containing either a common African American first
name (like Shaniqua) or a common European American first name (like Stephanie),
chosen from the Caliskan et al. (2017) study discussed in Chapter 6. They found
that most systems assigned lower sentiment and more negative emotion to sentences
with African American names, reflecting and perpetuating stereotypes that associate
African Americans with negative emotions (Popp et al., 2003).

In other tasks classifiers may lead to both representational harms and other
harms, such as censorship. For example the important text classification task of
toxicity detection is the task of detecting hate speech, abuse, harassment, or othertoxicity

detection
kinds of toxic language. While the goal of such classifiers is to help reduce soci-
etal harm, toxicity classifiers can themselves cause harms. For example, researchers
have shown that some widely used toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention minority identities like women
(Park et al., 2018), blind people (Hutchinson et al., 2020) or gay people (Dixon
et al., 2018), or simply use linguistic features characteristic of varieties like African-
American Vernacular English (Sap et al. 2019, Davidson et al. 2019). Such false
positive errors, if employed by toxicity detection systems without human oversight,
could lead to the censoring of discourse by or about these groups.

These model problems can be caused by biases or other problems in the training
data; in general, machine learning systems replicate and even amplify the biases in
their training data. But these problems can also be caused by the labels (for exam-
ple caused by biases in the human labelers) by the resources used (like lexicons,
or model components like pretrained embeddings), or even by model architecture
(like what the model is trained to optimized). While the mitigation of these biases
(for example by carefully considering the training data sources) is an important area
of research, we currently don’t have general solutions. For this reason it’s impor-

After Berg-Kirkpatrick et al (2012)



Outline

• Review
• Bootstrap:

• My model is better than your model?
• Is a covariate (feature) actually a strong indicator? (next 

lecture)

• Normal Distribution
• Central Limit Theorem



Empirical Distribution

When we simulate the statistic under the null hypothesis, 
we often see a distribution like: 

Why?
Center Limit Theorem



Center & Spread
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Questions/Goals

• How can we quantify natural concepts like “center” 
and “variability”? 

• Why do many of the empirical distributions that we 
generate come out bell shaped? 

• How is sample size related to the accuracy of an 
estimate? 
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Average and the 
Histogram
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The average (mean)

Data: 2, 3, 3, 9  
Average = (2+3+3+9)/4 = 4.25 

• Need not be a value in the collection 
• Need not be an integer even if the data are integers 
• Somewhere between min and max, but not 

necessarily halfway in between 
• Same units as the data 
• Smoothing operator: collect all the contributions in 

one big pot, then split evenly 
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Relation to the histogram
• The average depends only on the proportions in 

which the distinct values appears

• The average is the center of gravity of the histogram

• It is the point on the horizontal axis where the 
histogram balances
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Average as balance point

• Average is 4.25
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Average and Median
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Question

• What list produces this histogram?
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
• 3
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
• 3

• Median?
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
• 3

• Median?
• 3
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Question 2

• Are the medians of these two distributions the 
same or different? Are the means the same or 
different? If you say “different,” then say which one 
is bigger 
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Answer 2

• List 1
• 1, 2, 2, 3, 3, 3, 4, 4, 5 

• List 2
• 1, 2, 2, 3, 3, 3, 4, 4, 10

• Medians = 3
• Mean(List1) = 3
• Mean (List 2) = 3.55556
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Comparing Mean and Median

• Mean: Balance point of the histogram 
• Median: Half-way point of data; half the area of 

histogram is on either side of median 
• If the distribution is symmetric about a value, then 

that value is both the average and the median. 
• If the histogram is skewed, then the mean is pulled 

away from the median in the direction of the tail. 
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Question 

• Which is bigger, median or mean?
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Standard Deviation
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Defining Variability

• Plan A: “biggest value - smallest value”
• Doesn’t tell us much about the shape of the distribution 

• Plan B: 
• Measure variability around the mean 
• Need to figure out a way to quantify this 
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• Standard deviation (SD) measures roughly 
how far the data are from their average 

• SD = root mean square of deviations from average 

• SD has the same units as the data 

How far from the average?
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Why use Standard Deviation

• There are two main reasons. 

• The first reason:
• No matter what the shape of the distribution,

the bulk of the data are in the range “average plus or 
minus a few SDs” 

• The second reason: 
• Relation with the bellshaped curve
• Discuss this later in the lecture
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Chebyshev’s Inequality
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How big are most values?

No matter what the shape of the distribution,
the bulk of the data are in the range “average ± a few 
SDs” 

Chebyshev’s Inequality 
No matter what the shape of the distribution,
the proportion of values in the range “average ± z 
SDs” is 

at least 1 - 1/z2 
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Chebyshev’s Bounds

Range Proportion
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the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
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the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
average ± 3 SDs at least 1 - 1/9 (88.888...%) 
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Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
average ± 3 SDs at least 1 - 1/9 (88.888...%) 
average ± 4 SDs at least 1 - 1/16 (93.75%) 
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Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
average ± 3 SDs at least 1 - 1/9 (88.888...%) 
average ± 4 SDs at least 1 - 1/16 (93.75%) 
average ± 5 SDs at least 1 - 1/25 (96%) 
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True no matter what the distribution looks like

the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Understanding HW Results

• At least 50% of the class had scores between 20.59 
and 28.51 

• At least 75% of the class had scores between 16.62 
and 32.47
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Standard Units
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Standard Units

• How many SDs above average? 
• z = (value - average)/SD 

• Negative z: value below average 
• Positive z: value above average 
• z = 0: value equal to average 

• When values are in standard units: 
average = 0, SD = 1 

• Chebyshev: At least 96% of the values of z are 
between -5 and 5
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Question
What whole numbers are 
closest to 

(1) Average age

(2) The SD of ages 
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Answers

(1) Average age is close to 
27 (standard unit here is 
close to 0)

(2) The SD is about 6 years 
(standard unit at 33 is 
close to 
1. 33 – 27 = 6)
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The SD and the Histogram

• Usually, it's not easy to estimate the SD by looking 
at a histogram. 

• But if the histogram has a bell shape, then you can 
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The SD and Bell Shaped Curves

If a histogram is bell-shaped, then 

• the average is at the center 

• the SD is the distance between the average and the 
points of inflection on either side 
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Points of Inflection
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Normal Distribution
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Standard Normal Curve

Equation for the normal curve 
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Bell Curve
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How Big are Most of the Values

No matter what the shape of the distribution, 
the bulk of the data are in the range “average ± a few 
SDs” 

If a histogram is bell-shaped, then
• Almost all of the data are in the range “average ± 3 

SDs 
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Bounds and Approximations
Percent in 
Range

All 
Distributions

Normal 
Distributions

Average
+- 1 SD

At least 0% About 68%

Average 
+- 2 SDs

At least 75% About 95%

Average
+- 3 SDs

At least 
88.888…%

About 99.73%
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A “Central” Area
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Central Limit Theorem
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Central Limit Theorem

If the sample is 
• large, and 
• drawn at random with replacement,

Then, regardless of the distribution of the population, 
the probability distribution of the sample sum (or 

the sample average) is roughly normal 
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Sample Average

• We often only have a sample

• We care about sample averages because they estimate 
population averages. 

• The Central Limit Theorem describes how the normal 
distribution (a bell-shaped curve) is connected to 
random sample averages. 

• CLT allows us to make inferences based on averages of 
random samples
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