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Announcements

Final Projects:
Only 5 proposals submitted
Returned feedback

No more homeworks
Focus on projects instead

Today’s lecture:
• https://inferentialthinking.com/ 
• Chapter 9.4 – 14 (inclusive)



Midterm

• Allowed 1 page (double sided) cheatsheet

• List of detailed topics covered on Midterm:
• https://docs.google.com/document/d/195oRBEfG41DBY

BnSklSu8Ff3h0JidqZNCZOFyigf4j4/edit?usp=sharing

https://docs.google.com/document/d/195oRBEfG41DBYBnSklSu8Ff3h0JidqZNCZOFyigf4j4/edit?usp=sharing
https://docs.google.com/document/d/195oRBEfG41DBYBnSklSu8Ff3h0JidqZNCZOFyigf4j4/edit?usp=sharing
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Neural Networks

Different NN’s covered in class

• Feedforward
• RNNs

• LSTMs

• Transformers



NNs vs Linear/Logistic Regression

• Less need for feature engineering in NNs
• Network can learn the features

• NNs can fit non-linear data
• Due to activation functions

• Sigmod
• Tanh
• Relu
• Leaky relu



Feed forward vs RNNs

Issue when using Feed Forward Networks w/ text
• Input can vary in length, network can’t

Solution:
• RNNs



RNNs vs LSTMs

LSTMs include additional gates that determine how 
much history to incorporate



Bottleneck Problem

Single vector/representation needs to encode 
information needed for prediction/generation

Solution:
• Attention



Attention

Main idea:
In the later parts of the network 

(decoder/classifier), able to attend more to specific 
parts of the input compared to other parts

Idea behind transformers



Midterm review

• What else?
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Probability vs Statistics

Probability:
• Coming up with a view of the world then seeing if 

the data matches

Statistics:
• Creating a view of the world by looking at data



Probability vs Empirical 
Distribution
“Probability Distribution”:
• All the possible values of a quantity
• The probability of each of the values 

“Empirical” – based on observations

“Empirical Distribution”:
• All observed values

• The proportion of times each value appears 



Steps in Assessing a Model

• Choose a statistic that will help you decide whether the 
data support the model or an alternative view of the 
world
• Simulate statistic under the assumptions of the model 
• Draw a histogram of the simulated values

• This is the model’s prediction for how the statistic should 
come out

• Compute the statistic from the sample in the study
• If the two are not consistent => evidence against the model
• If the two are consistent => data supports the model so far
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Null and Alternative

The method only works if we can simulate data 
under one of the hypotheses.
• Null hypothesis

• A well defined chance model about how the data were 
generated

• We can simulate data under the assumptions of this 
model
• “Under the null hypothesis”

• Alternative hypothesis:
• A different view about the origin of the data

Copyright © 2016 Barnard College 16



Prediction Under the Null 
Hypothesis
• Simulate the test statistic under the null hypothesis

• Draw the histogram of simulated values
• The empirical distribution of the statistic under the null 

hypothesis

• It is a prediction about the statistic, made by the 
null hypothesis

• It shows all the likely values of the statistic
• Also how likely they are (if the null hypothesis is true)

• The probabilities are approximate, because we 
can’t generate all the possible random samples
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Statistical Significance
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Definition of the P-value

Formal name: observed significance level

The P-value is the chance,
• Under the null hypothesis,
• That the test statistic 
• Is equal to the value that was observed in the data
• Or is even further in the direction of the tail
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Conventions About Inconsistency

• “Inconsistent with the null”: The test statistic is in the 
tail of the empirical distribution under the null 
hypothesis

• “In the tail,” first convention:
• The area in the tail is less than 5%
• The result is “statistically significant”

• ”In the tail,” second convention:
• The area in the tail is less than 1%
• The result is “highly statistically significant”
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Comparing Two Samples
A/B Testing
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Terminology
• Compare values of sampled individuals in Group A with 

values of sampled individuals in Group B. 

• Question: Do the two sets of values come from the same 
underlying distribution? 

• Answering this question by performing a statistical test is 
called A/B testing. 
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The Groups and the Questions

• Random sample of mothers of newborns. 
Compare: 

A. Birth weights of babies of mothers who smoked during 
pregnancy 

B. Birth weights of babies of mothers who didn’t smoke

• Question: Could the difference be due to chance 
alone? 
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Hypotheses

Null Hypothesis:
• In the population, the distributions of the birth 

weights of the babies in the two groups are the 
same. (They are different in the sample just due to 
chance.) 

Alternative Hypothesis:
• In the population, the babies of the mothers who 

smoked weigh less, on average, than the babies of 
the non-smokers 
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Test Statistic

Group A: non-smokers 
Group B: smokers 

Statistic: 
• Difference between average weights: 

• Group B average - Group A average 

Negative values of this statistic favor the alternative 
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Simulating Under the Null

If the null is true, all rearrangements of labels are equally 
likely 

Permutation Test:
• Shuffle all birth weights
• Assign some to Group A and the rest to Group B

• Key: keep the sizes of Group A and Group B that same from 
before

• Find the difference between the two shuffled groups
• Repeat
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Random Permutations

• Sample randomly with replacement 

• With replacement:
• Randomly choose a value from a set, then put it back 

into the set
• Can result in duplicates
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A-B Testing for CTA

Difference in stress before vs during COVID

Observed Statistic: 
• Difference in avg LIWC score in n posts before COVID vs m posts during 

from a similar subreddit

Empirical distribution:
• Randomly assign n posts to before and m posts to during
• Compute difference between the two new groups

P-value
• Percent of simulated statistic that was like, or more extreme than 

observed statistic



Causality
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Randomized Controlled 
Experiment
• Sample A: control group 
• Sample B: treatment group 

• if the treatment and control groups are selected at 
random, then you can make causal conclusions. 

• Any difference in outcomes between the two 
groups could be due to 

• chance
• the treatment 

Copyright © 2016 Barnard College 30



Randomized Assignment & 
Shuffling
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Observational 
Sample

Randomized 
Controlled 
Experiment

Two-Sample 
Numerical 

Data

Shuffle 
Labels to 
Simulate 

Under the 
Null

Association

Causation

Data Generation Sample Data Hypothesis Testing
Difference of Means 

Permutation Test 

Conclusions



Estimation
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Inference: Estimation

• How do we calculate the value of an unknown 
parameter? 

• If you have a census (that is, the whole population): 
• Just calculate the parameter and you’re done 

• If you don’t have a census: 
• Take a random sample from the population 
• Use a statistic as an estimate of the parameter 
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Estimation Variability
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Variability of the Estimate

• One sample ➜ One estimate 

• But the random sample could have come out 
differently 

• And so the estimate could have been different 

• Big question: 
• How different would it be if we estimated again? 
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Quantifying Uncertainty

• The estimate is usually not exactly right.
• Variability of the estimate tells us something about 

how accurate the estimate is:
Estimate = Parameter + Error 

• How accurate is the estimate, usually? 
• How big is a typical error? 
• When we have a census, we can do this by 

simulation 
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Where to Get Another Sample?

• We want to understand errors of our estimate 
• Given the population, we could simulate 

• ...but we only have the sample! 

• To get many values of the estimate, we needed 
many random samples 

• Can’t go back and sample again from the 
population: 

• No time, no money 

• Stuck? 

Copyright © 2016 Barnard College 37



The Bootstrap

Copyright © 2016 Barnard College



The Bootstrap

• A technique for simulating repeated random 
sampling 

• All that we have is the original sample
• ... which is large and random
• Therefore, it probably resembles the population 

• So we sample at random from the original sample! 
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How the Bootstrap works
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Population Sample

Resamples



Why the Bootstrap works
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Population Sample

Resamples

What we wish we 
could get 

What we actually 
can get



Real World vs Bootstrap World
Real World
• True probability distribution 

(population)

• Random sample 1
• Estimate 1

• Random sample 2
• Estimate 2

• …
• Random sample 1000

• Estimate 1000

Bootstrap World
• Empirical distribution of 

original sample 
(“population”)

• Bootstrap sample 1
• Estimate 1

• Bootstrap sample 2
• Estimate 2

• …
• Bootstrap sample 1000

• Estimate 1000

Copyright © 2016 Barnard College 42

Hope: these two scenarios are analogous 



The Bootstrap Principle

• The bootstrap principle:
• Bootstrap-world sampling ≈ Real-world sampling 

• Not always true!
• ... but reasonable if sample is large enough 

• We hope that: 
a) Variability of bootstrap estimate 
b) Distribution of bootstrap errors 
...are similar to what they are in the real world 
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Key to Resampling

• From the original sample, 
• draw at random 
• with replacement 
• as many values as the original sample contained 

• The size of the new sample has to be the same as 
the original one, so that the two estimates are 
comparable 
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Variability

Our results might be different based on the original 
sample

How can we quantify this variability? 



Confidence Intervals
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95% Confidence Interval

• Interval of estimates of a parameter 
• Based on random sampling 
• 95% is called the confidence level 

• Could be any percent between 0 and 100 
• Higher level means wider intervals 

• The confidence is in the process that gives the 
interval: 

• It generates a “good” interval about 95% of the time 
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Use Methods 
Appropriately 
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Can You Use a CI Like This? 

By our calculation, an approximate 95% confidence 
interval for the average age of the mothers in the 
population is (26.9, 27.6) years. 

True or False:
• About 95% of the mothers in the population were 

between 26.9 years and 27.6 years old. 

Answer: 
• False. We’re estimating that their average age is in this 

interval. 
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Is This What a CI Means? 

An approximate 95% confidence interval for the average 
age of the mothers in the population is (26.9, 27.6) years. 

True or False:
There is a 0.95 probability that the average age of 

mothers in the population is in the range 26.9 to 27.6 
years. 

Answer:
False. The average age of the mothers in the 

population is unknown but it’s a constant. It’s not 
random. No chances involved 
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When NOT to use the Bootstrap

• if you’re trying to estimate very high or very low 
percentiles, or min and max 

• If you’re trying to estimate any parameter that’s 
greatly affected by rare elements of the population 

• If the probability distribution of your statistic is not 
roughly bell shaped (the shape of the empirical 
distribution will be a clue) 

• If the original sample is very small 
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Using a CI for Testing

• Null hypothesis: PopulaHon average = x 
• Alternadve hypothesis: PopulaHon average ≠ x 
• Cutoff for P-value: p% 
• Method: 

• Construct a (100-p)% confidence interval for the 
populakon average 

• If x is not in the interval, reject the null 
• If x is in the interval, can’t reject the null 
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Confidence Intervals & 
Hypothesis Tests
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Using a CI for Testing

• Null hypothesis: PopulaHon average = x 
• Alternadve hypothesis: PopulaHon average ≠ x 
• Cutoff for P-value: p% 
• Method: 

• Construct a (100-p)% confidence interval for the 
populakon average 

• If x is not in the interval, reject the null 
• If x is in the interval, can’t reject the null 
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Empirical Distribution

When we simulate the statistic under the null hypothesis, 
we often see a distribution like: 

Why?
Center Limit Theorem



Center & Spread
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Questions/Goals

• How can we quandfy natural concepts like “center” 
and “variability”? 

• Why do many of the empirical distribudons that we 
generate come out bell shaped? 

• How is sample size related to the accuracy of an 
esdmate? 
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Average and the 
Histogram

Copyright © 2016 Barnard College



The average (mean)

Data: 2, 3, 3, 9  
Average = (2+3+3+9)/4 = 4.25 

• Need not be a value in the collection 
• Need not be an integer even if the data are integers 
• Somewhere between min and max, but not 

necessarily halfway in between 
• Same units as the data 
• Smoothing operator: collect all the contributions in 

one big pot, then split evenly 
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Relation to the histogram
• The average depends only on the proporHons in 

which the disdnct values appears

• The average is the center of gravity of the histogram

• It is the point on the horizontal axis where the 
histogram balances

Copyright © 2016 Barnard College 62



Average as balance point

• Average is 4.25
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Average and Median
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Question

• What list produces this histogram?
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
• 3
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
• 3

• Median?
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Question

• What list produces this histogram?

1, 2, 2, 3, 3
3, 4, 4, 5 

• Average?
• 3

• Median?
• 3
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Question 2

• Are the medians of these two distributions the 
same or different? Are the means the same or 
different? If you say “different,” then say which one 
is bigger 
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Answer 2

• List 1
• 1, 2, 2, 3, 3, 3, 4, 4, 5 

• List 2
• 1, 2, 2, 3, 3, 3, 4, 4, 10

• Medians = 3
• Mean(List1) = 3
• Mean (List 2) = 3.55556
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Comparing Mean and Median

• Mean: Balance point of the histogram 
• Median: Half-way point of data; half the area of 

histogram is on either side of median 
• If the distribution is symmetric about a value, then 

that value is both the average and the median. 
• If the histogram is skewed, then the mean is pulled 

away from the median in the direction of the tail. 
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Question 

• Which is bigger, median or mean?
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Standard Deviation
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Defining Variability

• Plan A: “biggest value - smallest value”
• Doesn’t tell us much about the shape of the distribution 

• Plan B: 
• Measure variability around the mean 
• Need to figure out a way to quantify this 
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• Standard deviation (SD) measures roughly 
how far the data are from their average 

• SD = root mean square of deviations from average 

• SD has the same units as the data 

How far from the average?
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Steps: 12345



Why use Standard Deviation

• There are two main reasons. 

• The first reason:
• No matter what the shape of the distribution,

the bulk of the data are in the range “average plus or 
minus a few SDs” 

• The second reason: 
• Relation with the bellshaped curve
• Discuss this later in the lecture
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Chebyshev’s Inequality
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How big are most values?

No ma1er what the shape of the distribu7on,
the bulk of the data are in the range “average ± a few 
SDs” 

Chebyshev’s Inequality 
No ma1er what the shape of the distribu7on,
the propordon of values in the range “average ± z 
SDs” is 

at least 1 - 1/z2 
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Chebyshev’s Bounds

Range Proportion
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the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
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the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
average ± 3 SDs at least 1 - 1/9 (88.888...%) 

Copyright © 2016 Barnard College 83

the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
average ± 3 SDs at least 1 - 1/9 (88.888...%) 
average ± 4 SDs at least 1 - 1/16 (93.75%) 
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the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Chebyshev’s Bounds

Range Proportion
average ± 2 SDs at least 1 - 1/4 (75%) 
average ± 3 SDs at least 1 - 1/9 (88.888...%) 
average ± 4 SDs at least 1 - 1/16 (93.75%) 
average ± 5 SDs at least 1 - 1/25 (96%) 
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True no maVer what the distribuHon looks like

the proportion of values in the range “average ± z 
SDs” is at least 1 - 1/z2 



Understanding HW Results

• At least 50% of the class had scores between 20.59 
and 28.51 

• At least 75% of the class had scores between 16.62 
and 32.47
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Standard Units
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Standard Units

• How many SDs above average? 
• z = (value - average)/SD 

• Negative z: value below average 
• Positive z: value above average 
• z = 0: value equal to average 

• When values are in standard units: 
average = 0, SD = 1 

• Chebyshev: At least 96% of the values of z are 
between -5 and 5
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Question
What whole numbers are 
closest to 

(1) Average age

(2) The SD of ages 
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Answers

(1) Average age is close to 
27 (standard unit here is 
close to 0)

(2) The SD is about 6 years 
(standard unit at 33 is 
close to 
1. 33 – 27 = 6)
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The SD and the Histogram

• Usually, it's not easy to estimate the SD by looking 
at a histogram. 

• But if the histogram has a bell shape, then you can 
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The SD and Bell Shaped Curves

If a histogram is bell-shaped, then 

• the average is at the center 

• the SD is the distance between the average and the 
points of inflection on either side 
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Points of Inflection
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Normal Distribution
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Standard Normal Curve

Equation for the normal curve 
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Bell Curve
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How Big are Most of the Values

No matter what the shape of the distribution, 
the bulk of the data are in the range “average ± a few 
SDs” 

If a histogram is bell-shaped, then
• Almost all of the data are in the range “average ± 3 

SDs 
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Bounds and Approximations
Percent in 
Range

All 
Distributions

Normal 
Distributions

Average
+- 1 SD

At least 0% About 68%

Average 
+- 2 SDs

At least 75% About 95%

Average
+- 3 SDs

At least 
88.888…%

About 99.73%
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A “Central” Area
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Central Limit Theorem
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Central Limit Theorem

If the sample is 
• large, and 
• drawn at random with replacement,

Then, regardless of the distribution of the population, 
the probability distribution of the sample sum (or 

the sample average) is roughly normal 
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Sample Average

• We often only have a sample

• We care about sample averages because they estimate 
population averages. 

• The Central Limit Theorem describes how the normal 
distribution (a bell-shaped curve) is connected to 
random sample averages. 

• CLT allows us to make inferences based on averages of 
random samples
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