
CS 383 – Computational 
Text Analysis

Lecture 19
Generating text

Adam Poliak
03/29/2023

Slides adapted from Philipp Koehn



Machine Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters
• Update weights by using them to make predictions and 

seeing how far off our predictions are 
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them



Outline

Generating text

Evaluating Generated Text



When do we even want to 
generate text?
Machine Translation

Summarization

ChatBots

…



Generating text so far

Greedy approach:
• At each time step, choose the word with the highest 

probability
• Optionally can condition on the previous generated

words
• Like in Language modeling!

Side: how do we prove correctness of greedy
approaches?

Hint: use induction
https://jeffe.cs.illinois.edu/teaching/algorithms/b

ook/04-greedy.pdf

https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf


Encoder-decoder for MT



Why might Greedy not be 
optimal?

Choosing the best local word to generate, not
necessarily the best sentence/paragraph globally to
generate

Possible solutions?



Beam Search Decoding!



Search Tree

Nodes: states
The potential word to generate

Branches/edges: actions

Edges have weights
Score for each word
Probability of generating each word



Search Tree Example



How long to search through the 
tree?
We need to consider all paths

How many paths are there?
𝑉!

Solution:
Beam search!



Beam search

Only keep k vocabulary terms are each time step
beam width

Apply softmax over vocabulary, keep just top k terms
search frontier
k-hypotheses

Incrementally repeat this until we generate </s>







Scoring hypotheses

What issues might there be?
Longer sentences will have higher scores

Solution:
Normalize by length of generated sentence



Algorithm



Beam search decoding

What data structure might you use to store
hypotheses?
• Priority Queue
• Maintain the order of the best hypotheses

Beam search in action:
http://mt-class.org/jhu/stack-decoder/

http://mt-class.org/jhu/stack-decoder/


Other decoding methods

A*

Hill-Climbing
Greedy approach

Finite State Transducers



Outline

Generating text

Evaluating Generated Text



How would you determine if a 
generated text is good
Why cannot we not use accuracy (or other stats from 
the confusion matrix)?

Compare the generated text to some human 
generated text



Comparing to human generated 
text
Why is this a hard problem?

many different generated text as acceptable → 
semantic equivalence / similarity

How might you do this?

Metrics:
BLEU
Embedding approachs (e.g. BertScore)



BLEU
N-gram overlap between machine translation output 
and reference translation 

Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)

Typically computed over the entire corpus, not single 
sentence



BLEU Example



Plan for next week

Statistical Inference
• Quantifying uncertainty
• Hypothesis testing
• Null hypothesis
• p-value
• Confidence interval
• Bootstraping

• Forecast (time-series prediction)


