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Announcements

* Final project ideation
* Mandating partner, must work with a partner!
* Due this Friday 03/25

* I’'m deleting all single-person submissions tonight then re-opening
the submission

* HWO6:

* I’'m writing it from scratch (mostly)
 Downloading tweets
Building classifiers
Asking a research question
* Playing with directionality in an RNN
e Change dimension sizes of hidden layers

* Change which word embeddings to use
* Your choice!

Partner
Will have >2 weeks



Twitter API for next HW

1. Create a Twitter developer account
https://developer.twitter.com/

2. Go to https://developer.twitter.com/en/apps and log in
with your Twitter user account.

3. Click “Create an app”
Fill out the form, and click “Create”

5. A pop up window will appear for reviewing Developer
Terms. Click the “Create” button again.

>

Instructions from http://socialmedia-class.org/twittertutorial.html

Look here for instructions on how to use Tweepy:
https://github.com/BC-COMS-2710/summer21-
material/blob/master/demo/Demol13.ipynb



http://socialmedia-class.org/twittertutorial.html
https://github.com/BC-COMS-2710/summer21-material/blob/master/demo/Demo13.ipynb
https://github.com/BC-COMS-2710/summer21-material/blob/master/demo/Demo13.ipynb

Midterm - Format

Multiple Choice
Short Answer

Problems to work out by hand



Midterm Topics

Unsupervised approaches:
N-gram Language Modeling
Backoff, smoothing
Document Term Matrix
Dimensionality Reduction
Topic Modeling — LDA
Supervised Machine Learning:

Classification & Regression

SGD

Neural Networks
FNN
Backprop

RNNs

Attention



Midterm

* Create a computation graph and update weights
based on a loss

* Use Gibbs sampling to update topic assighments

e Some more but not sure yet



Machine Learning in a nutshell

In a ML model, what are we training?
* Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters

* Update weights by using them to make predictions and
seeing how far off our predictions are

* Loss function!

Algorithm to learn weights?
* SGD
* Others exist but not covering them



Outline

Attention & Self-attention recap

Transformer

Pytorch demo (if time)



Attention

What problem does it solve?
* Bottleneck from having single sentence representation

How does it work?

* |Instead of looking at just the sentence representation,

combine it with a new attention vector for each
prediction

Attention vector/output:

* A weighted average off the outputs of the hidden layer
in the encoder



Self-attention

What problem does it solve?
 Static word representations

How does it work?

. Usequuery’s and key’s to determine how much to attend to other
words

* Uses the specific word’s query vector and the other words’ key vector
* Uses value vector to represent other words

Attention vector/output:
* A weighted average off the other words’ value vectors

* How do we get a weighted average?
e Softmax
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Self-attention

(7
A = softmax V

Ja.

— Thisis the main idea
1"'3‘ behind a transformer
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Adding positional

N O‘O
. . +|
—
information —
a3l —| X | X
3 a1,4
L
|
a1,4
Qs K4 V4
(@) O (@)
(0] @) (@)
T A AT
00000
X1 X2 X3 X4
The cat sat on
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Adding positional
information
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Positional Representations

e Justgofrom1l..n
* Con:



Self Attention

Given input x
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Transformer

Model form
Attention is all you
need
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Outline

Attention & Self-attention recap

Transformer

Pytorch demo (if time)



Tra N SfO M EN (from Attention is all you need 2017)

 Encoder-decoder with attention modules
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3 forms of attention

\/ﬁ

MaskedDecoder Self-Attention

Encoder Self-Attention



A Survey of Transformers 7

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Sparse

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132] )

—(Lineariud )—(Linear Transformer([62], Performer[18, 19], RFA[95], Delta Net[113] )

—(Pmlolype )—(Clustered Attention[138], Informer[170] )

W{MCA[SA], Set Transformer[70], Linformet[mz])

—(Low-rank )—(Low-mnk Attention[45], CSALR[16], Nystromformer [152] )

w —(Local Transformer[156], Gaussian Transformer[42] )
Prior —(}‘ dictive Attention Transformer[143], Realformer([51], Lazyformer[159] )
Attention CAMTL[98]

—(Average Attention[164], Hard-Coded Gaussian Attention[161], Synlhesizer[l?}l])

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

_(M“lﬁ'h“d )“—(‘” ptive Attention Span[126], Multi-Scale Transformer[44] )

Dynamic Routing[40, 74]

—(Absolute }—{BERT([28], Wang et al. [139], FLOATER(35] )

Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. )—(TLIPE[63], Roformer[124] )

L(Implicit Rep}— Complex Embedding[140], R-Transformer [144], CPE[20] )
—(Placement )—(post-LN[za, 83, 137), pre-LN[6, 17, 67, 136, 141] )
—@.ayerNorm)——(Subsutules )—(Adeonn[lSS], scaled £, normalization[93], PowerNorm[121] )

—(Nomrfree )—(ReZem’l‘mnsformer[S] )
—(Activ. Func.}—{Swish{106], GELU[14, 28], GLU[118] )

_@_ Enlarge Product-key Memory([69], Gshard[71], Switch Transformer[36],
Capacity Expert Prototyping[155], Hash Layer[110]

—(Dropping )—(All-Auention layer[127], Yang et al. [157] )

—(Lighweighl )—(Lite Transformer([148], Funnel Transformer[23], DeLighT[91] )

oy ﬁ(ealformar[Sl],P dictive A ion Transfi [143], T Al ion[8]
—(Connecuv: Feedback Transf (34]

UT[26], Conditional Computation Transformer(7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]
L

Transfe -XL[24], C ive Transf [103], M [147) )
)

X-formers

Yoshida et al. [160], ERNIE-Doc[30]

Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER([154], TNT[48]

L{Alt. Arch. )—@T[m]," Transf [89], Sandwich Transf [99], MAN[35], DARTSformer[167]

—(Encoder ——(BERT][28), RoBERTa[87], BigBird[163] )

I—{Pre-Train }—(Decoder _—(GPT[101], GPT-2(102], GPT-3[12] )

- CREE ) https://www.sciencedirect.com/science/article

—(NLP )—(BERT[ZB],ET[] 23], Transformer-XL[24],Compressive Transformer[103], TENER[154] )

€V )—{Image Transformer[94), DETR[13], ViT(33], Swin Transformer[85), ViViT[3] ) / P i / $2666651022000146
)

—(Aud.io )—(Speech Transformer(31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56]

L(Multimodal }—(VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView([29] )

Fig. 3. Taxonomy of Transformers



BERT (2018

Contributions:

e Bi-directional self-attention
encoder rather than BiLSTM

* Brought Transformers
beyond Machine Translation

* Attention All You Need
(Summer 2017)

 BERT (October 2018)

Side note:

* Attention was
introduced by Bahdanau
et al. (2015) for MT

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQuUAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAlI GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers



BERT: Bidirectional Encoder
Representations from Transformers

Uses just transformer encoder, not decoder

Bi-directional self-attention

Self-Attention
Layer




Training BERT (1/2)

Since it uses both-directions, language modeling
would be cheating

So, its trained on a task called
Masked Language Modeling



Masked Language Modeling

the man went to the [MASK] to buy a [MASK] of milk

gallon

* Predict the hidden words based on the context

* What happens if we mask too many words?
e Can’t make predictions



Masked Language Modeling

“ocabulay
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Masked Language Modeling

long thanks ttle
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MLM In Bert

15% of tokens in the training set were sampled
* 80% of which were masked
* 10% were swapped with other words

* 10% were kept the same



Training BERT (2/2)

If Masked Language Modeling tries to predict the
missing word, what might another task/object be if
we move the unit of analysis beyond words?

Next-Sentence Prediction



Next Sentence Prediction

Predict if Sentence B follows Sentence A

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

Learns ordering of sentences



Training BERT
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Training BERT

Training data > 3.3B words

* Wikipedia (2.5B words) + BookCorpus (800 M
words)

Optimizer:

« AdamW, linear decay of the learning rate

Time

* 4 days



2 Versions of BERT

* Base with 12 encoder layers
* Large with 24 encoder layers

24 ( ENCODER
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BERT (2018

Contributions:

e Bi-directional self-
attention encoder
rather than BiLSTM

* MLM & NSP
objective

* Large amounts of

data

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQuAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers



Fine-tuning

* Used pre-trained models in other tasks
* Initialize model with pre-trained model’s parameters
e Update parameters using labeled data from new task
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Since BERT

RoBERTa (Liu et al., 2019)

* Only Masked Language Model training

* Trained on 10x data as BERT

e Stronger performance on wide range of tasks

SQuAD
Model data  bsz steps (v1.1/2.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer  160GB 8K 500K 94.6/89.4 90.2 96.4
BERT | arcE

with BOOKS + WIKI 13GB 256 IM  90.9/81.8 86.6 93.7



Since BERT

ALBERT (Lan et. al. 2020)
* Increased model size

* Shared parameters across layers

ELECTRA (Clark et. al. 2020)

* Generator and Discriminator pre-training
e Normal MLM but then choose which of the words were

masked

the —> [MASK] —>
chef — chef —>

the — the —
meal —> meal —>

Generator
cooked —>[MASK] —>| (typically a
small MLM)

sample

--> the —>

chef —>»!

--> ate —>

the —>

Discriminator

meal —>

—> original
—> original
—> replaced
—> original

—> original




Since BERT

Incorporate longer context
Longformer, Big Bird, ...

Multilingual BERT

Domain Specific BERT
SciBERT, BioBERT, TwitterBERT, FinBERT, ...

Smaller versions of BERT
DistillBERT, TinyBert, ...



BERT Summary

* Primarily an encoder (w/ classifiers slapped on top)
* Transformer networks trained on massive data
* Learn contextual representations of words

* Pre-train a large LM and then fine-tune for specific
tasks (just replace the top layer)

* Not designed for text generation



GPT-2
Instead of using encoders, we can stack decoders

@ GPT-2 SERT

' DECODER l ENCODER \
‘ DECODER J ENCODER
{ DECODER y ENCODER \

http://jalammar.github.io/illustrated-gpt2/



Decoding

3 4 5 6 7 8 1024



Decoding

4 5 6 7 8 1024



Auto-regressive

When making a new prediction, incorporate the
prediction of the previous model

For LM decoding, this means:

when predicting the next word, consider what
the model just generated

Question: What do we lose?
Ability to look both ways



Self-Attention in GPT
 orders

YA A,

A
DECODER BLOCK #2
(Masked Self-Attention
I
<s> robot must obey

1 2 3 4 S

512



BERT vs GPT




GPT-2 sizes
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More on GPT

Highly recommend Jay Alammar’s blog post
http://jalammar.github.io/illustrated-gpt2/



Next class

Evaluation metrics for classification beyond accuracy:
e Chapter 4.7

Decoding beyond greedy approaches
 Beam Search — Chapter 10.4

Afterwords (Thursday and beyond), hypothesis testing
* How do | know my model is better that your model

 How do | know what | discover isnt just specific to my
sampled data or due to chance



