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Announcements

* Final project ideation
e 13 submissions across 15 students

* Mandating partner, must work with a partner!
* Due this Friday 03/25

* HWO5:

* Due tonight
* I[gnore test.py
* Get the driver working



Twitter API for next HW

1. Create a Twitter developer account
https://developer.twitter.com/

2. Go to https://developer.twitter.com/en/apps and log in
with your Twitter user account.

3. Click “Create an app”
Fill out the form, and click “Create”

5. A pop up window will appear for reviewing Developer
Terms. Click the “Create” button again.

>

Instructions from http://socialmedia-class.org/twittertutorial.html

Look here for instructions on how to use Tweepy:
https://github.com/BC-COMS-2710/summer21-
material/blob/master/demo/Demol13.ipynb



http://socialmedia-class.org/twittertutorial.html
https://github.com/BC-COMS-2710/summer21-material/blob/master/demo/Demo13.ipynb
https://github.com/BC-COMS-2710/summer21-material/blob/master/demo/Demo13.ipynb

Outline

Attention & Self-attention

Transformer

Pytorch demo (if time)



Machine Learning in a nutshell

In a ML model, what are we training?
* Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters

* Update weights by using them to make predictions and
seeing how far off our predictions are

* Loss function!

Algorithm to learn weights?
* SGD
* Others exist but not covering them



Attention

What problem does it solve?
* Bottleneck from having single sentence representation

How does it work?

* |Instead of looking at just the sentence representation,

combine it with a new attention vector for each
prediction

Attention vector/output:

* A weighted average off the outputs of the hidden layer
in the encoder



Seq2Seq Model

Encoding of the
source sentence.

Target sentence (output)
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Seqg2Seq w/ Attention

Attention
output

Attention
distribution

Attention
scores
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RNN

il a m’  entarté <START> he hit
1N J

Y
Source sentence (input)

Chris Manning

NNY J9p0o2aq



Self-attention




Attention pros!

* Significantly improves performance

* It’s very useful to allow decoder to focus on certain parts of
the source

* Solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass
bottleneck

e Hwith vanishing gradient problem
* Provides shortcut to faraway states

* Provides some interpretability

* By inspecting attention distribution, we can see what the
decoder was focusing on

* Can be applied to any neural model, not just decoder



Attention in a nutshell

For a new item, figure out how relevant each items is in a collection
of different items

W /o attention: we are just relying on a naive summary of the
collection

Encoder-decoder setting:

* How relevant are all the words from the input to a single word in
the output

Encoder-MLP setting:
 How relevant are all the words from the input to our prediction



Self-attention in a nutshell

Attention:

* For a new item, figure out how relevant items are
in a collection of different items

Self-attention

* How relevant are all the words from the input to a
single word in the input



Self-attention




Terminology

Query:
Key:
Value:



Terminology

Query: what to match
Key: the thing to match

Value: what to be extracted from the match

Daniel Khashabi



Terminology

Query: what to match
Key: the thing to match
: what to be extracted from the match
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Query #9 50% | | value#2

30% | value#1

Daniel Khashabi



Terminology

Query: what to match:
q; = Wix;

Key: the thing to match:

: what to be extracted from the match

Daniel Khashabi



Terminology

Query: what to match:

q; = Wix;
Key: the thing to match:
ki = kai
: what to be extracted from the match
vl- — vai

Daniel Khashabi
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Attention score
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Attention

Encoder
RNN

scores
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Attention score

Attention
scores
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Attention Scores

We can store all the g’s
and k’s in a matrix as well
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Attention Scores

We can store all the g’s
and k’s in a matrix as well
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Encoder Attention
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Attention

Encoder Attention
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Self-attention

When creating a representation for x;, how much
weight/focus/attention should we give to x;
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Output of each input cell

These are three representations of each input

Each representation is created by multiplying the
input by a weight matrix
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Self-Attention Scores

When creating a representation for x;, how much
weight/focus/attention should we give to x;

Vi,j € |x| we must compute score(x;, x;)
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Selt-Attention Scores
Vi,j € |x| we must compute score(x;, x;)

Question: are these scores distance functions?

No! score(x;, x;) shouldn’t be equal to score(x;, x;)
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Self-attention
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Self-attention
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Self-attention

1,1
ql k1 ”1
o) 0 o)
(0] (0} O
00000
X1

a1,2

()

2 k, v;

ol |o| |o

ol |o| |o

00000

X2
cat

93 k; V3
(0} 0] (o)
(0} (0] (o)
00000
X3
sat

s k4 Uy
ol lo| |o
ol o] |o
A y \ A
00000
X4
on



Self-attention
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Self-attention

a1 a1 2
91 ki v d2 K, V3
o) o) o) o) o) o)
o) o) o) o) o) o)
00000 00000
X1 X2

1,3

()

93 k3 v3

(@) (0] (o)

(0] (0] (o)

y y Ar

00000

X3
sat

s k4 Uy
ol [o] [o
ol |o| |o
00000
X4
on



Self-attention

Daniel Khashabi




Daniel Khashabi

Self-attention
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Self-attention
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Self-attention
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Self-attention -




. M OO0
Self-attention Il ‘
[
1,4
L
|
a1,4
Qs K4 V4
(0] (0] (0]
(@) @) @)
1 1
00000
X1 X2 X3 X4
The cat sat on



Self-attention
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A = softmax V
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RNN LM /Joe
ho—>h; —>h, —>hy3—> hy —> hg
X1 Xy X3 X4 Xs
Every nation wants Joe,, to loy

600.465 - Intro to NLP - J.
Eisner
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RNN LM
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Training can be parallelized

At training time, the whole sentence is known.
Layer-L representations can be computed in parallel, with each word
attending to the layer-(L-1) representations of itself and previous words

nation wants Joe to  (oops, to predict the very first

/ / / / word: we needed Xy =< s >!

h3 R It's missing from our diagrams.)
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Training,

oncri, RNN vs. Transformer

per layer
Computations: © O(n) ® 0(n2)
# serial steps: ® O(n) dueto —  © O(1): all /™ in parallel

+ O(log n) to sum n inputs
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Adding positional
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Adding positional
information
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Adding positional
information
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An approach: 0
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Transformer block
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Transformer block

Residual connection:

* Passes information from a lower layer to a higher
layer directly (w/out going through intermediate
layers)

Layer normalization

* Ensures the values in a layer are in an appropriate
range

* Based on normalization/z-scores in statistics (we’ll
cover normalization later this semester)



Multi-head attention
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Transformers as LM

Next word long and thanks for all
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So long and thanks for

1Tl WM Training a transformer as a language model.



Training transformers

# parameters in transformer >> # parameters in LSTM
So, training requires a lot of data

We can pre-train a transformer, and then use it as a
sentence-representation/feature extracter

Like in the probing work

Led to SOoTA models



Next class
* Pre-training and fine-tuning

* Examples of popular transformer models:

* BERT: Bidirectional Encoder Representations from
Transformersrmers (Google)

« RoBERTa: Robustly Optimized BERT (Facebook)
* GPT: Generative Pre-trained Transformer (OpenAl)



