

CS 383 – Computational Text Analysis

Lecture 15 Attention & Transformers

Adam Poliak 03/15/2023

Slides adapted from Daniel Khashabi, Chris Manning

Announcements

- Reading 05
 - Due tonight
- HW06:
 - Due Monday night
 - Notebook from lab (plus two more questions)
 - Logistic Regression in Pytorch
 - More practice with Pytorch and data loading!

- Office hours this week:
 - Normal Thursday slot

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)

Machine Learning in a nutshell

In a ML model, what are we training?

Parameters!

How do we train parameters in supervised learning? train parameters == figure out values for the parameters

- Update weights by using them to make predictions and seeing how far off our predictions are
 - Loss function!

Algorithm to learn weights?

- SGD
- Others exist but not covering them

RNN - motivation

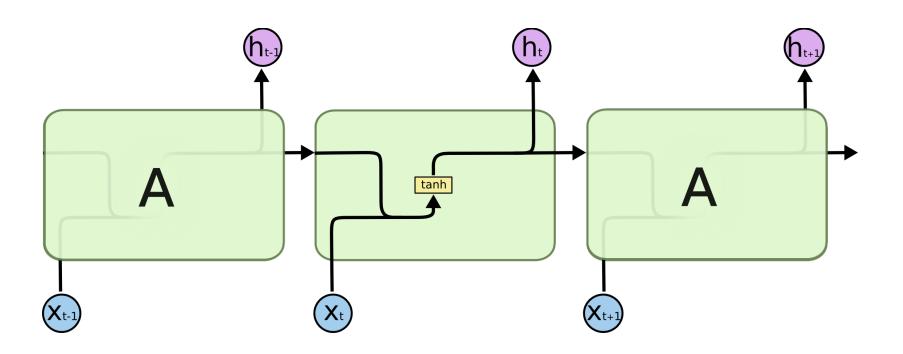
How can we model a **long** (possibly infinite) context using a finite **model?**

Recursion

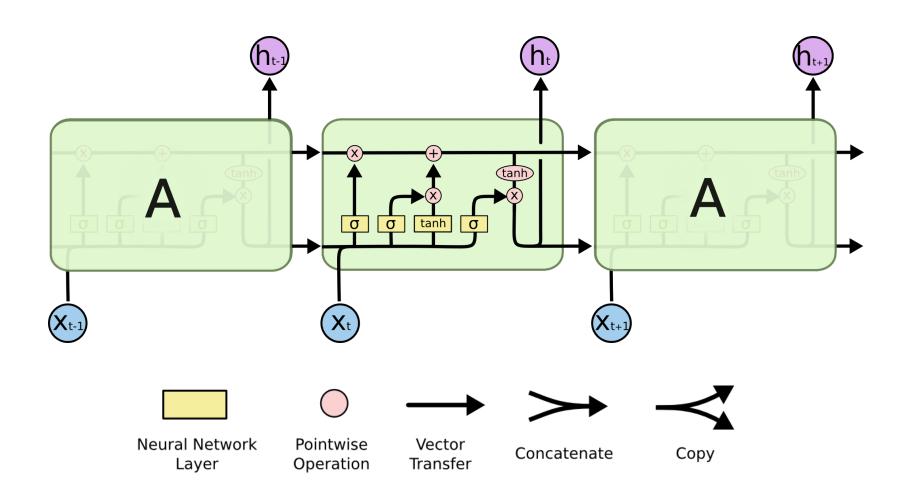
Recurrent Neural Networks are a family of NNs that learn sequential data via **recursive dynamics**

RNN internal

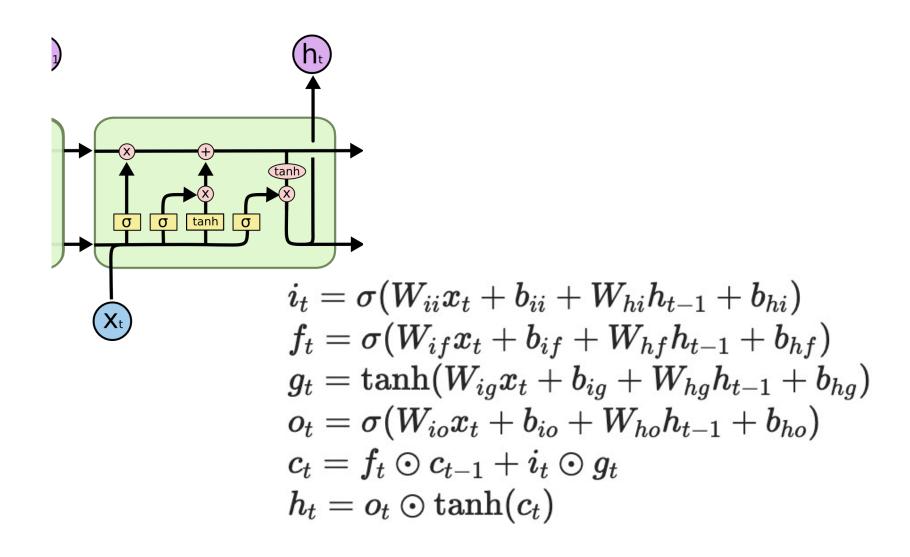
$$h_t = anh(x_t W_{ih}^T + b_{ih} + h_{t-1} W_{hh}^T + b_{hh})$$



LSTM internal



LSTM internal



LSTMs success

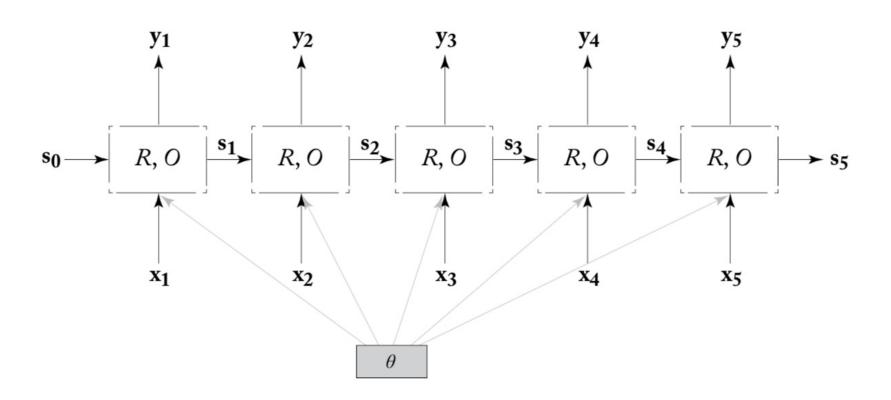
In 2013–2015, LSTMs started achieving state-of-the-art results

- SOTA in tasks like handwriting recognition, speech recognition, machine translation, parsing, and image captioning, LMs
- LSTMs became the dominant approach for most NLP tasks until very recently

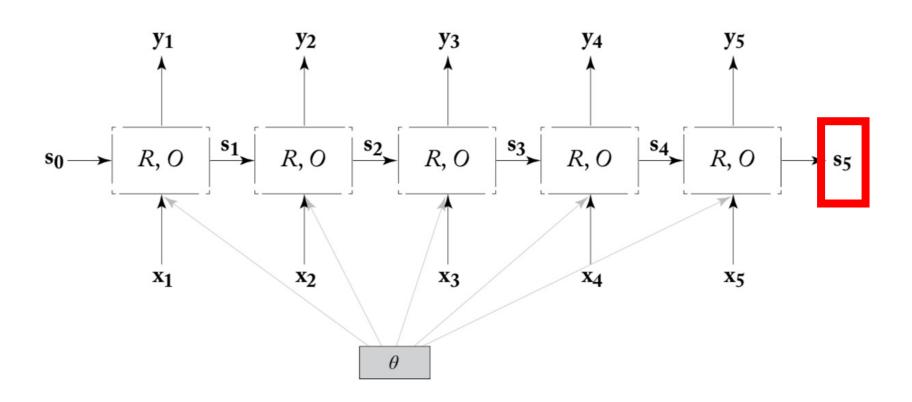
Since 2020, other approaches (e.g., Transformers) have become dominant for many tasks

- WMT (Machine Translation conf + competition):
 - In WMT 2016, the summary report contains "RNN" 44 times
 - In WMT 2019: "RNN" 7 times, "Transformer" 105 times

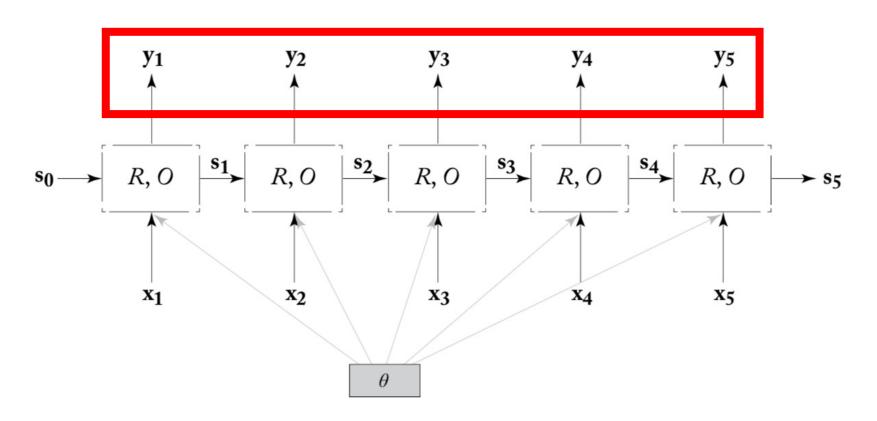
Extracting representation from RNN layer



Extracting representation from RNN layer



Extracting representation from RNN layer



Min pool implementation

tensor = torch.rand((100,20,300))
Creates a tensor of size:

torch.Size([100, 20, 300])

What might 100, 20, and 300 indicate if this is what comes out of an RNN?

Min pool implementation

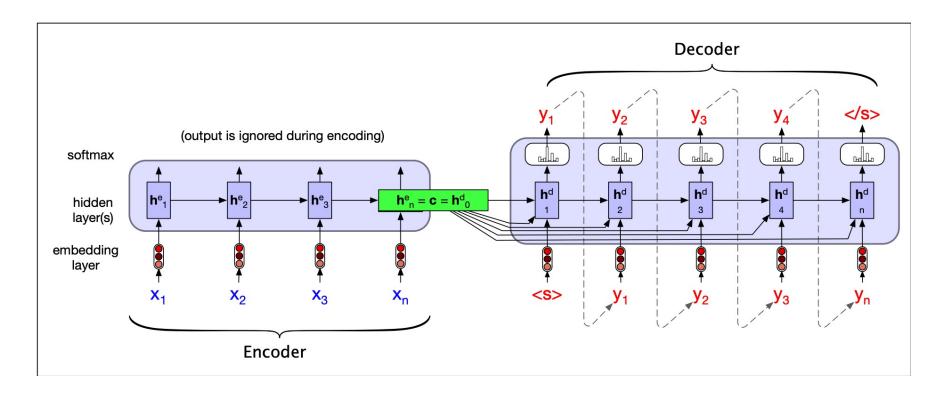
2 approaches in pytorch:

- 1. .mean()
- 2. torch.nn.functional.avg_pool2d

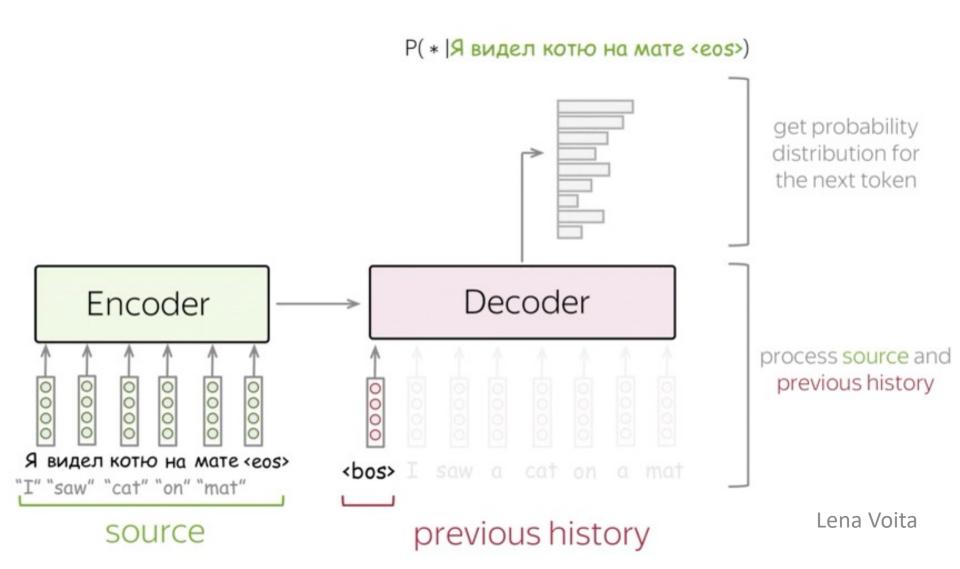
https://pytorch.org/docs/stable/generated/torch.nn.functional.avg pool2d.html#torch.nn.functional.avg pool2d

Encoder-decoder

Decoder only uses information from last hidden cell!

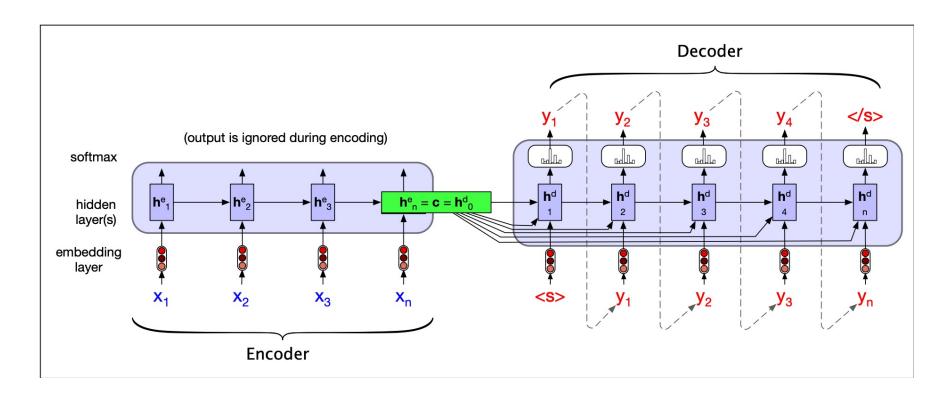


Encoder-decoder in action



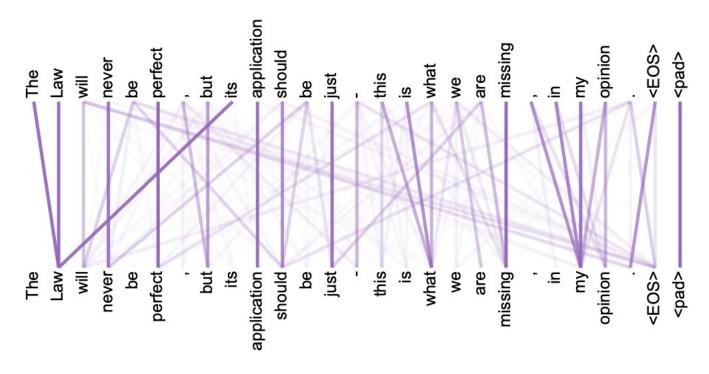
Bottleneck

Last hidden cell is a bottleneck



Solution: Attention!

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence



Outline

Recap – RNNs, Seq2Seq

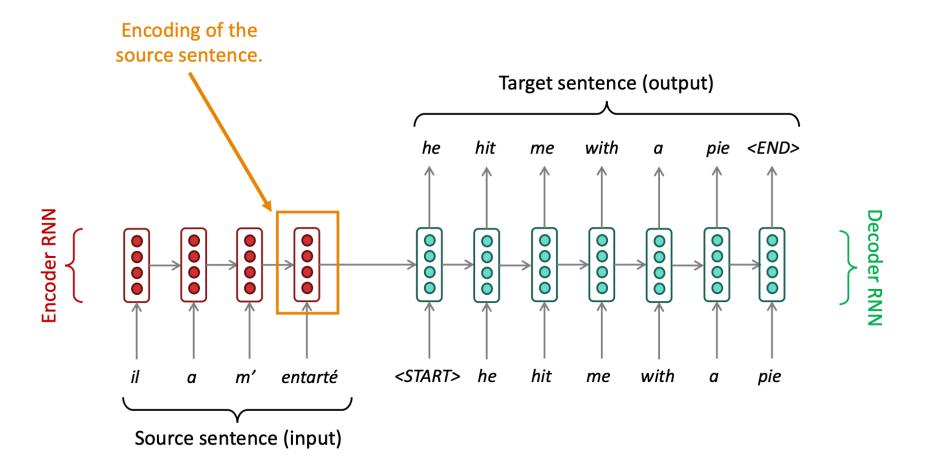
Attention

Self-attention

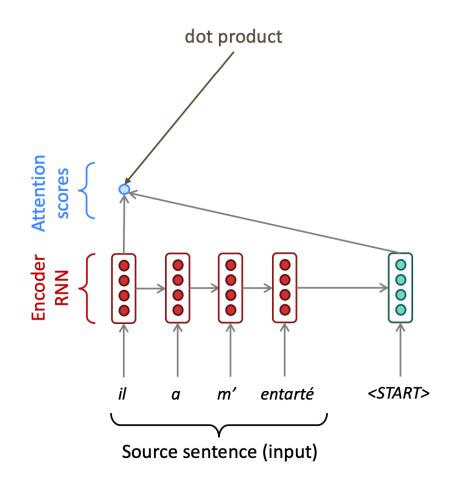
Transformer

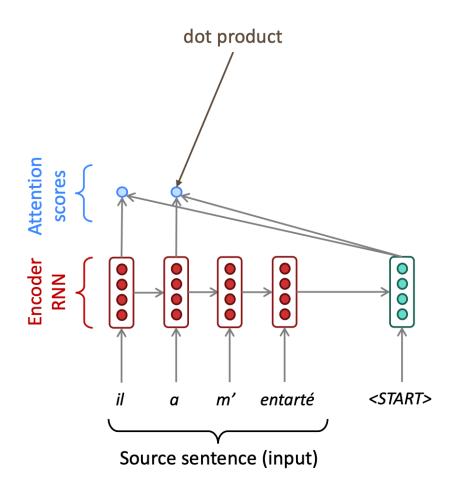
Pytorch demo (if time)

Seq2Seq Model

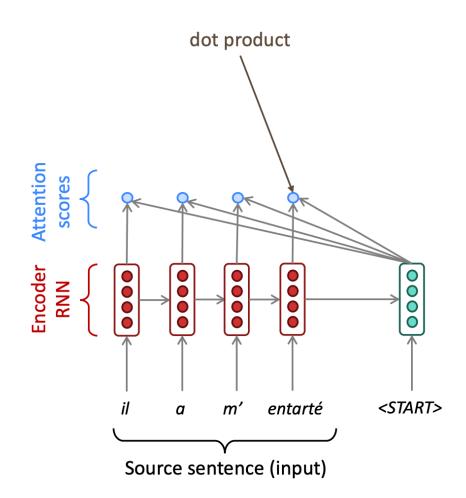


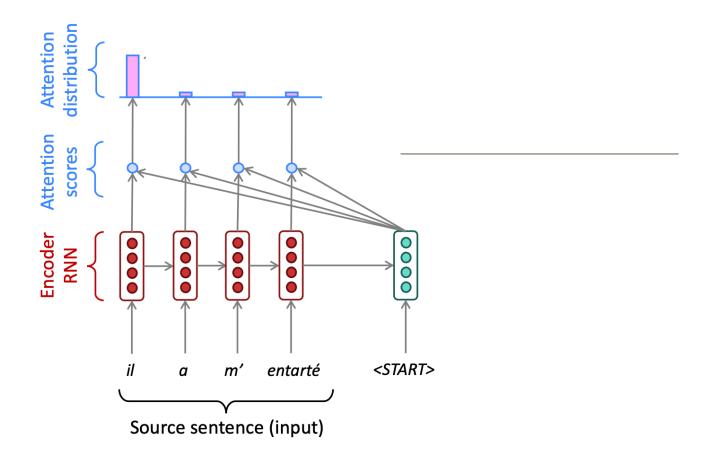
Decoder RNN



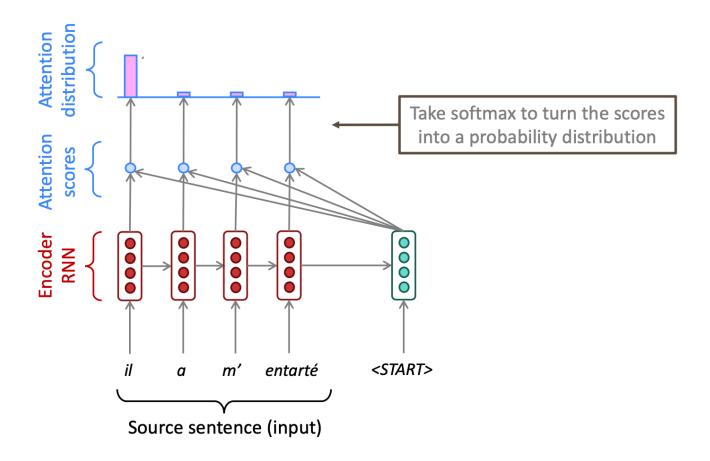


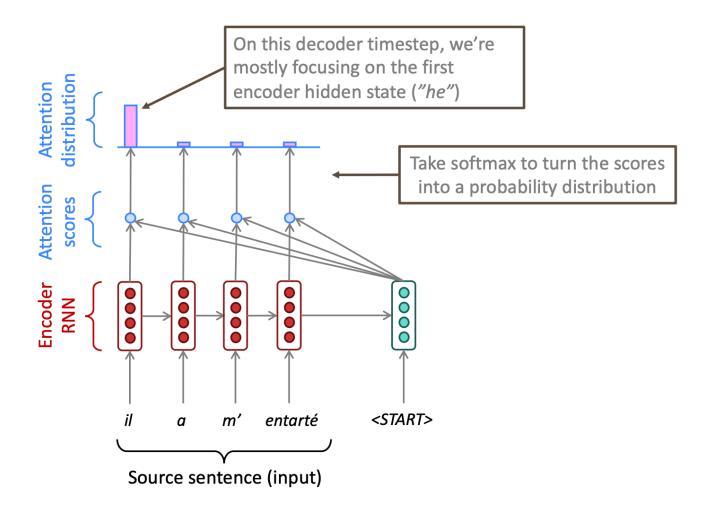
Decoder RNN



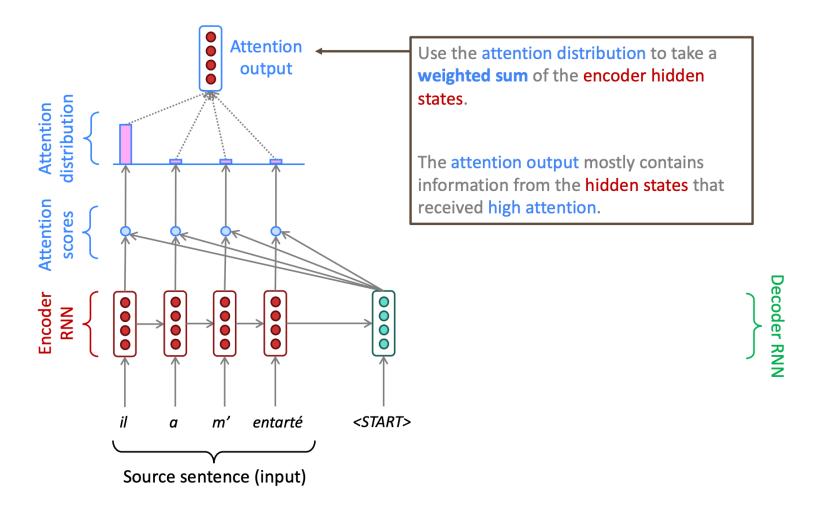


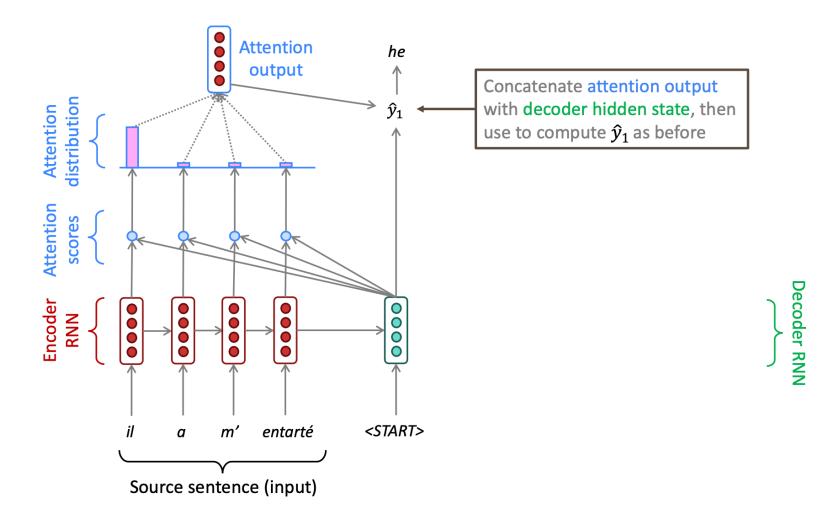
Decoder RNN

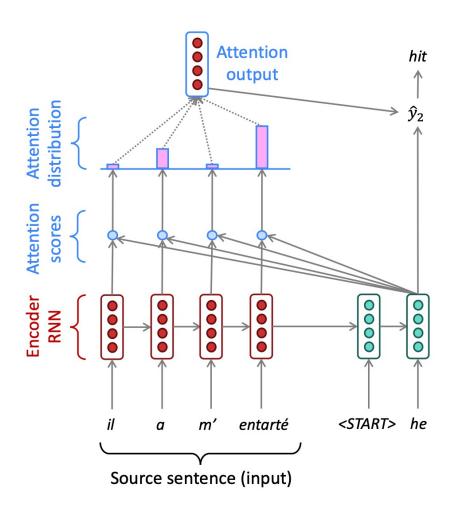




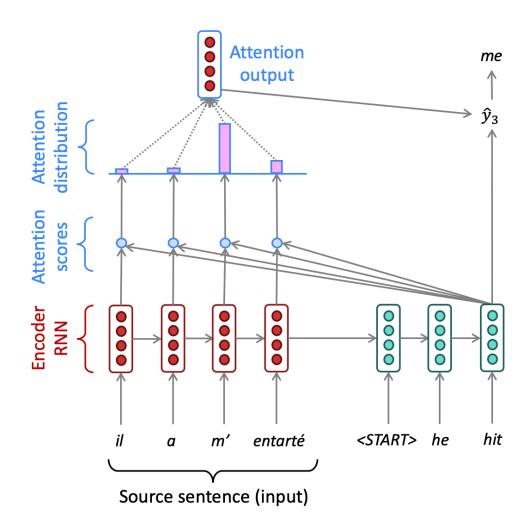
Decoder RNN







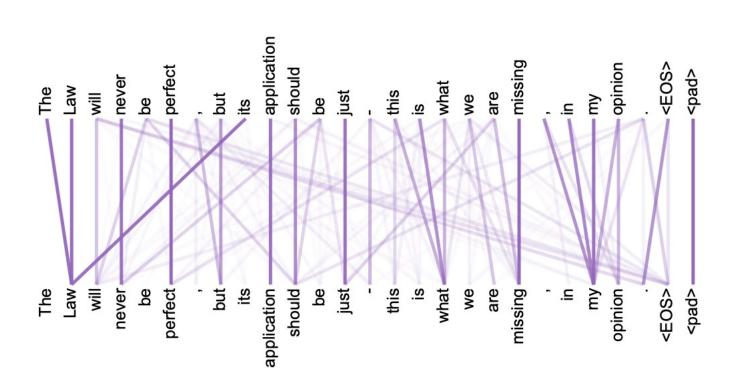
Decoder RNN



Attention pros!

- Significantly improves performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on

Interpretability



Attention pros!

- Significantly improves performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Hwith vanishing gradient problem
 - Provides shortcut to faraway states
- Provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
- Can be applied to any neural model, not just decoder

Attention in a nutshell

For a new item, figure out how relevant each items is in a collection of different items

W/o attention: we are just relying on a naïve summary of the collection

Encoder-decoder setting:

 How relevant are all the words from the input to a single word in the output

Encoder-MLP setting:

How relevant are all the words from the input to our prediction

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)

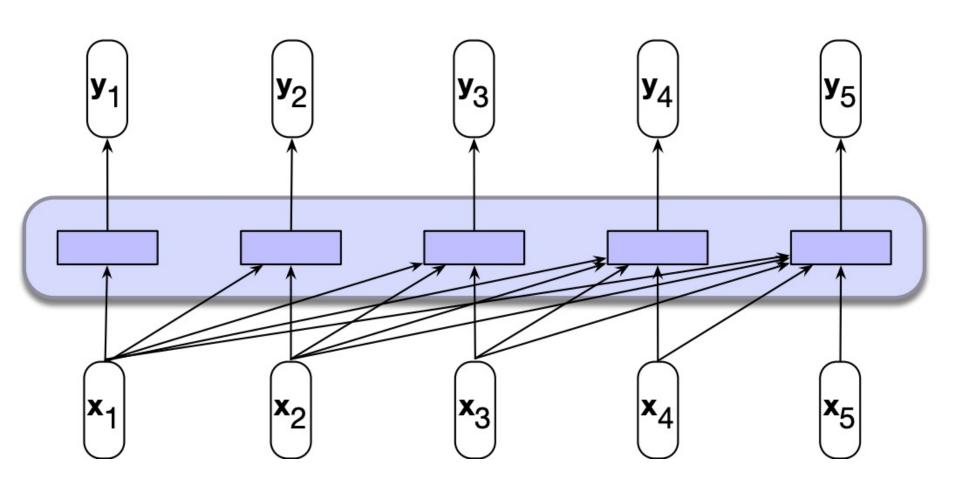
Self-attention in a nutshell

Attention:

 For a new item, figure out how relevant items are in a collection of different items

Self-attention

 How relevant are all the words from the input to a single word in the input



Query:

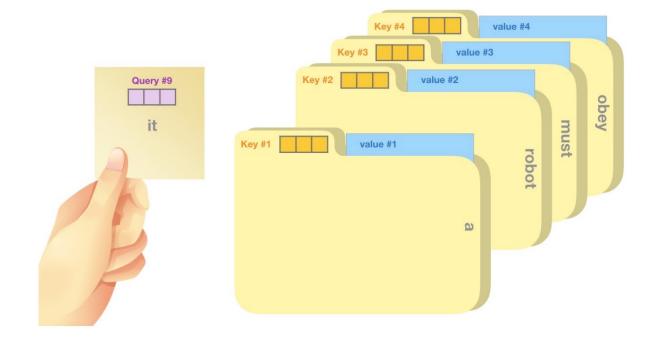
Key:

Value:

Query: what to match

Key: the thing to match

Value: what to be extracted from the match

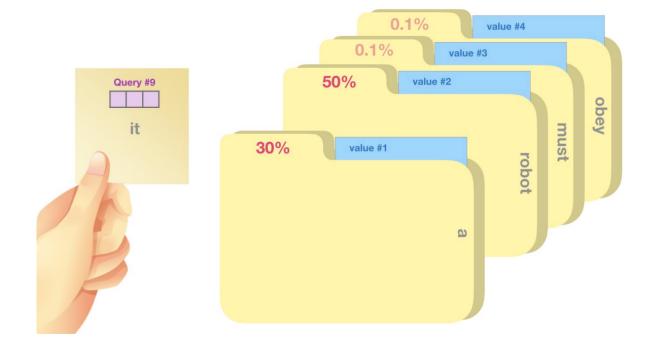


Daniel Khashabi

Query: what to match

Key: the thing to match

Value: what to be extracted from the match



Daniel Khashabi

Query: what to match:

$$q_i = W^q x_i$$

Key: the thing to match:

Value: what to be extracted from the match

Query: what to match:

$$q_i = W^q x_i$$

Key: the thing to match:

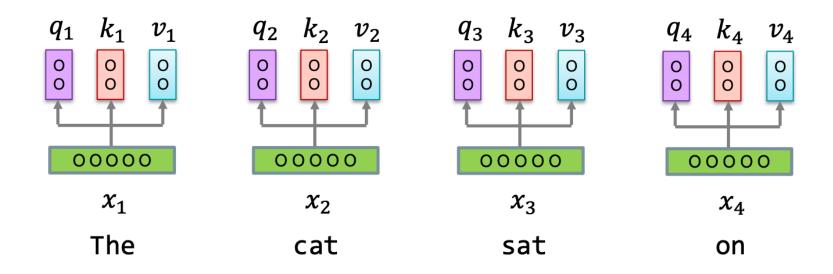
$$k_i = W^k x_i$$

Value: what to be extracted from the match

$$v_i = W^v x_i$$

Output of each input cell

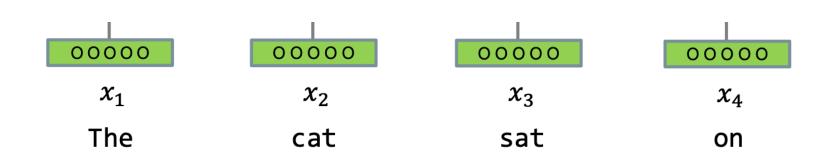
These are three representations of each input Each representation is created by multiplying the input by a weight matrix



Self-Attention Scores

When creating a representation for x_i , how much weight/focus/attention should we give to x_i

 $\forall i, j \in |x|$ we must compute $score(x_i, x_j)$

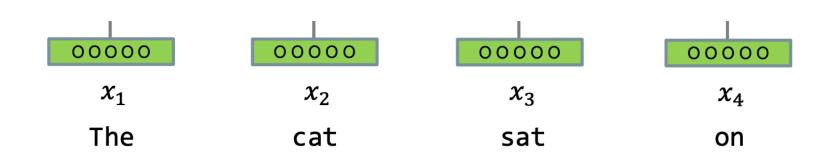


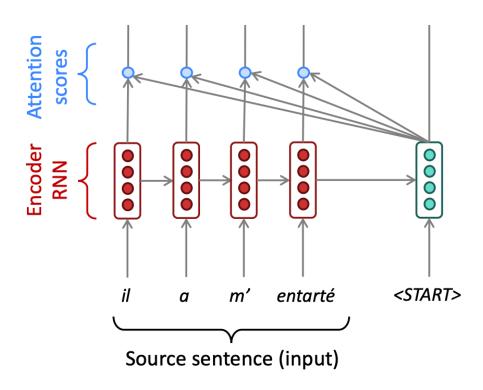
Self-Attention Scores

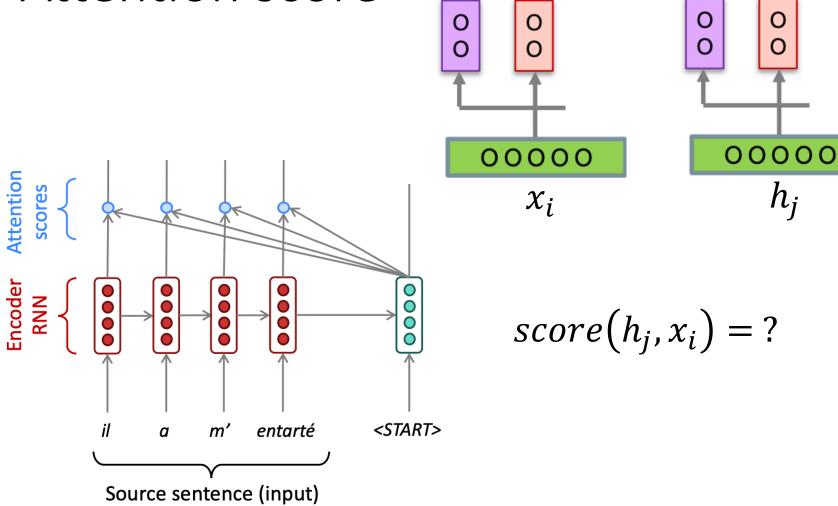
 $\forall i, j \in |x|$ we must compute $score(x_i, x_j)$

Question: are these scores distance functions?

No! $score(x_i, x_j)$ shouldn't be equal to $score(x_i, x_j)$







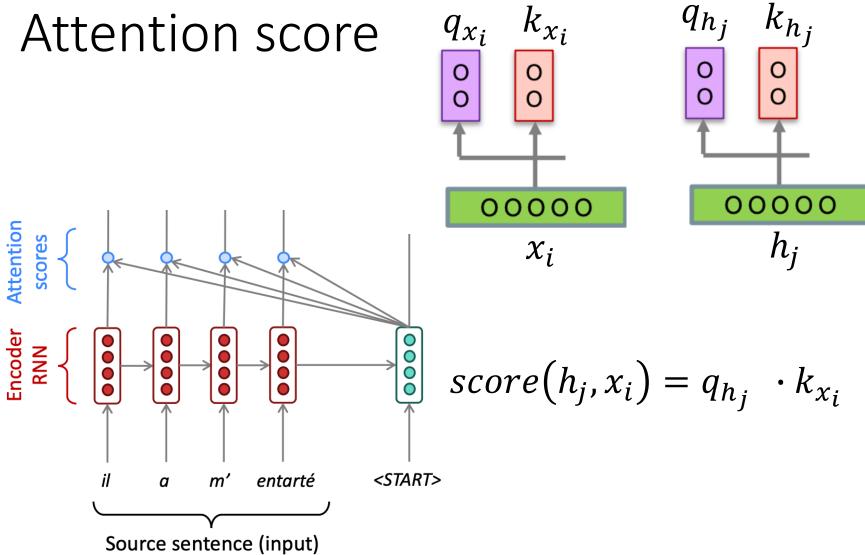
 k_{h_j}

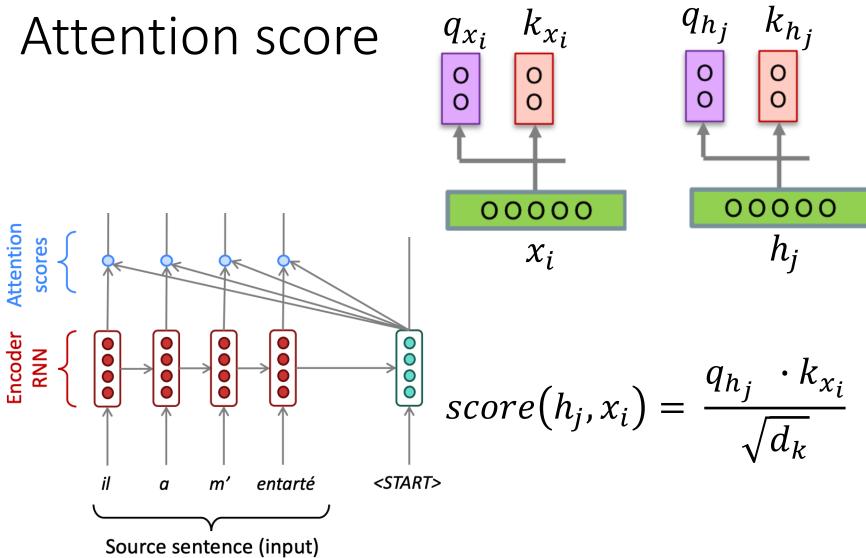
 h_i

 q_{h_i}

 k_{x_i}

 q_{x_i}





We can store all the q's and k's in a matrix as well

$$A_{score} = \begin{bmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{m,1} & \cdots & \alpha_{m,n} \end{bmatrix}$$

$$=\begin{bmatrix} score(h_1, x_1) & \cdots & score(h_1, x_n) \\ \vdots & \ddots & \vdots \\ score(h_m, x_1) & \cdots & score(h_m, x_n) \end{bmatrix}$$

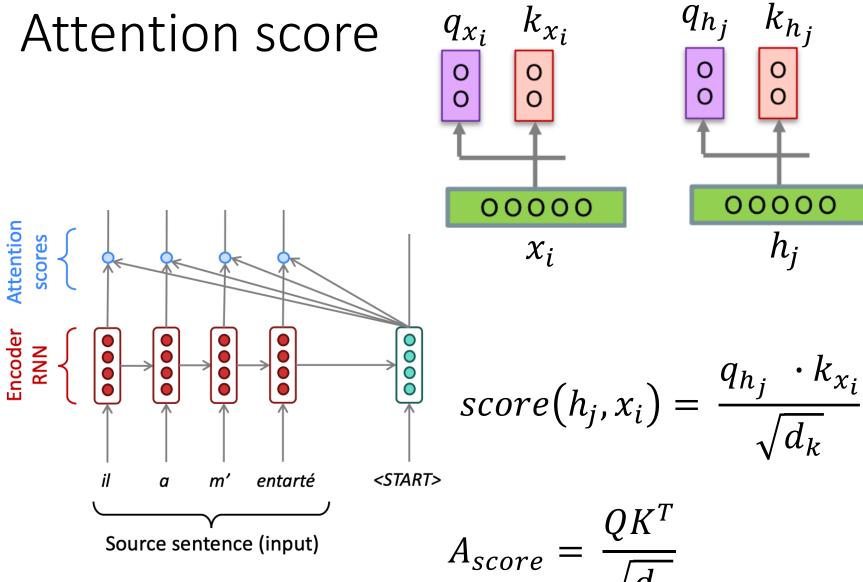
$$= \begin{bmatrix} \frac{q_{h_1} \cdot k_{\chi_1}}{\sqrt{d_k}} & \cdots & \frac{q_{h_1} \cdot k_{\chi_n}}{\sqrt{d_k}} \\ \vdots & \ddots & \vdots \\ \frac{q_{h_m} \cdot k_{\chi_1}}{\sqrt{d_k}} & \cdots & \frac{q_{h_m} \cdot k_{\chi_n}}{\sqrt{d_k}} \end{bmatrix}$$

$$A_{score} = \begin{bmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{m,1} & \cdots & \alpha_{m,n} \end{bmatrix}$$

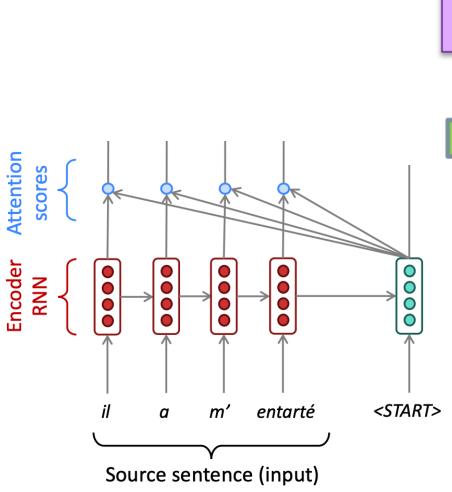
$$= \begin{bmatrix} \frac{q_{h_1} \cdot k_{\chi_1}}{\sqrt{d_k}} & \cdots & \frac{q_{h_1} \cdot k_{\chi_n}}{\sqrt{d_k}} \\ \vdots & \ddots & \vdots \\ \frac{q_{h_m} \cdot k_{\chi_1}}{\sqrt{d_k}} & \cdots & \frac{q_{h_m} \cdot k_{\chi_n}}{\sqrt{d_k}} \end{bmatrix}$$

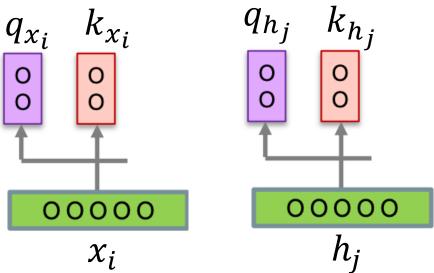
$$A_{score} = \frac{QK^T}{\sqrt{d_k}}$$

We can store all the q's and k's in a matrix as well



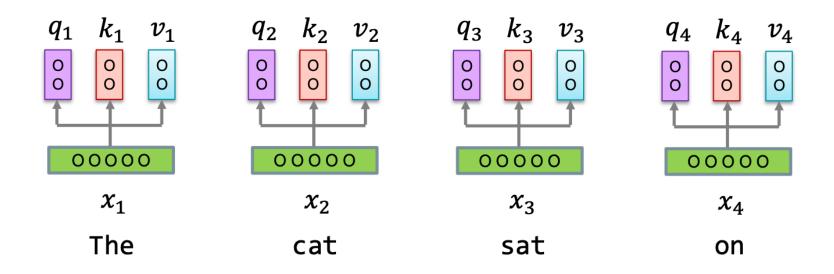
Attention



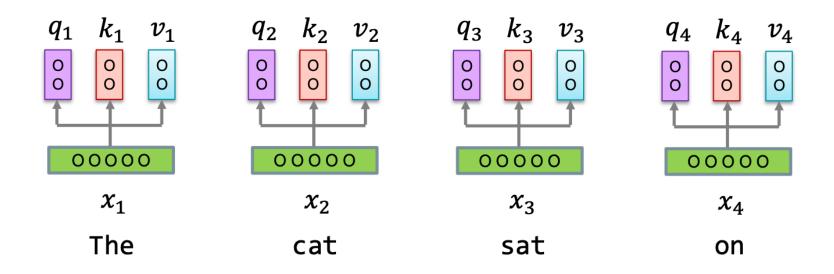


$$A = softmax(\frac{QK^T}{\sqrt{d_k}})$$

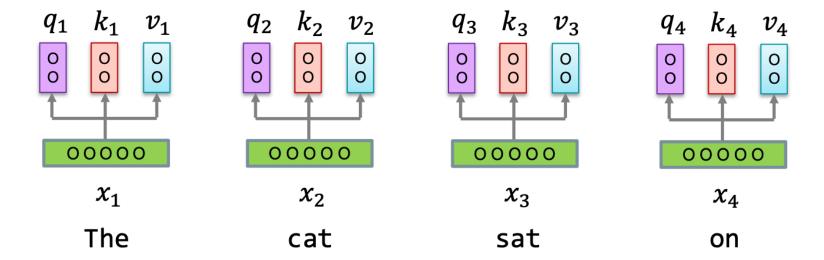
When creating a representation for x_i , how much weight/focus/attention should we give to x_i

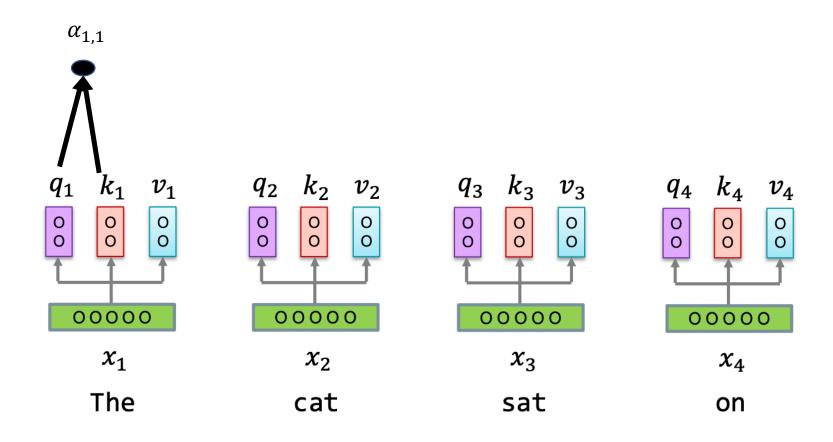


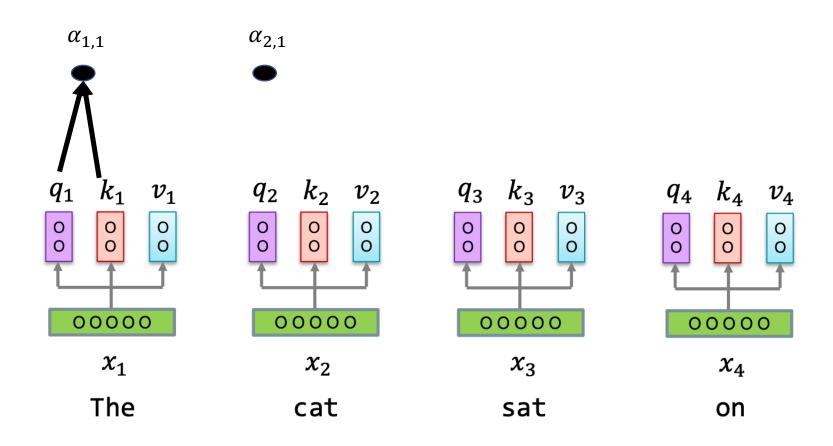
When creating a representation for x_1 , how much weight/focus/attention should we give to x_i

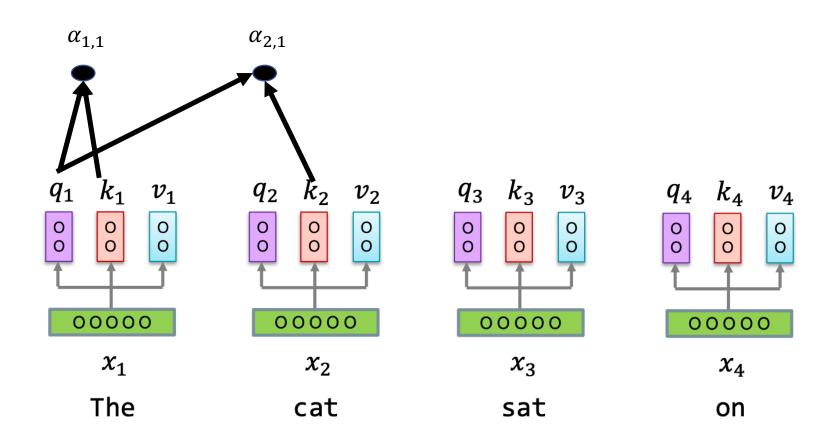


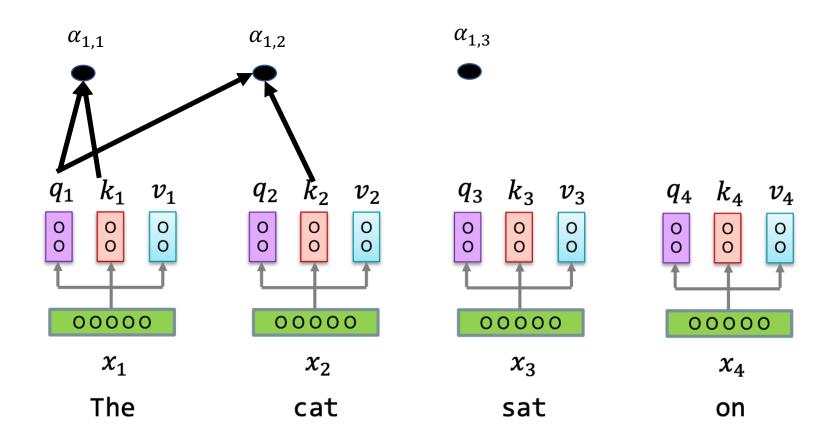
 $\alpha_{1,1}$

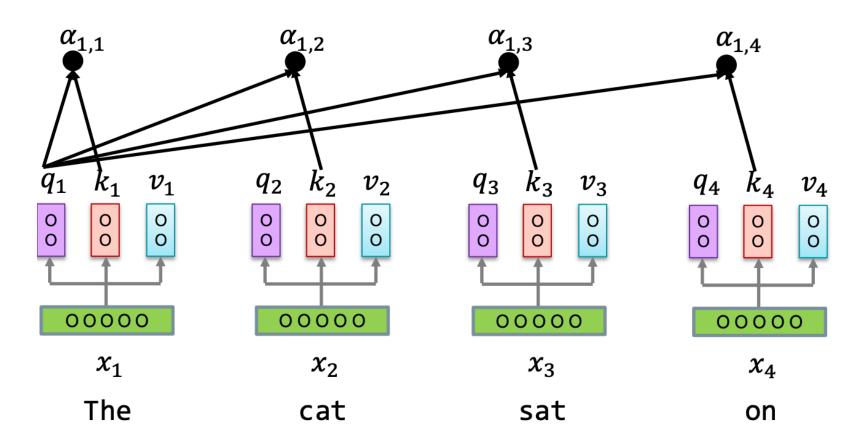




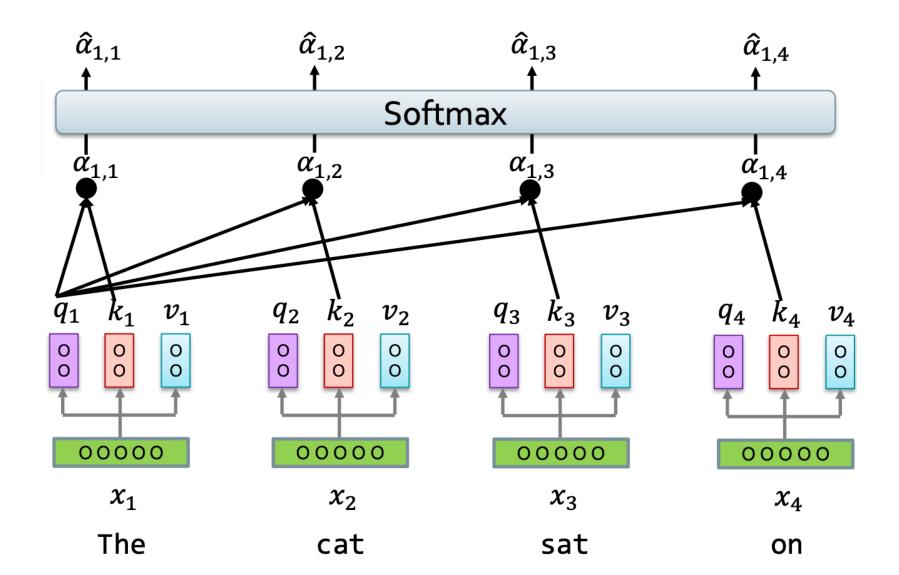


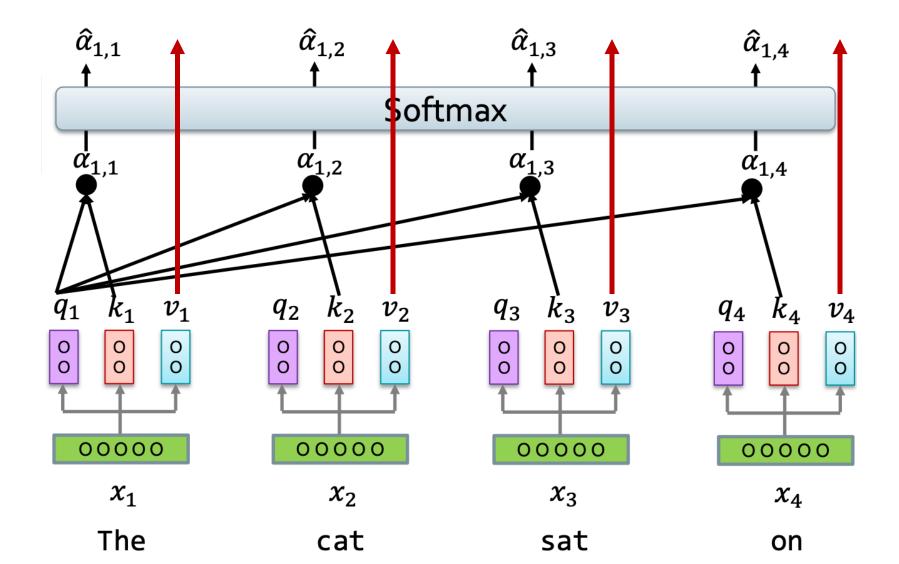


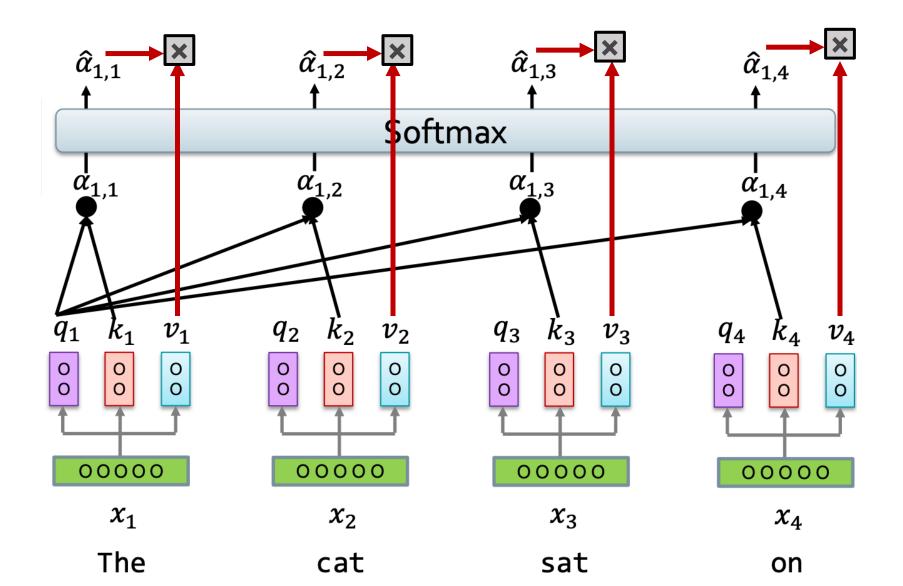


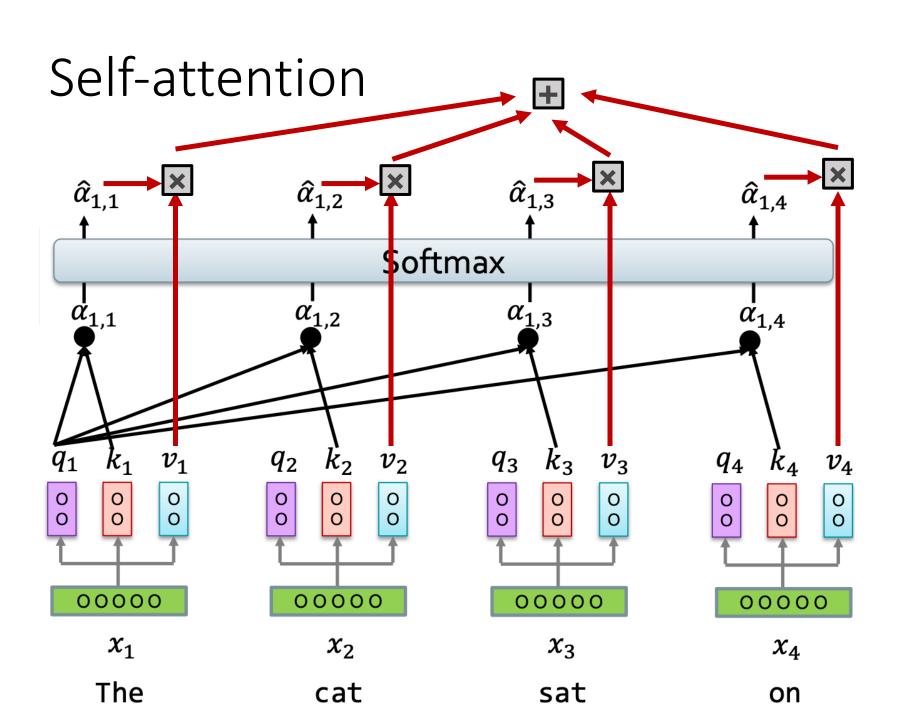


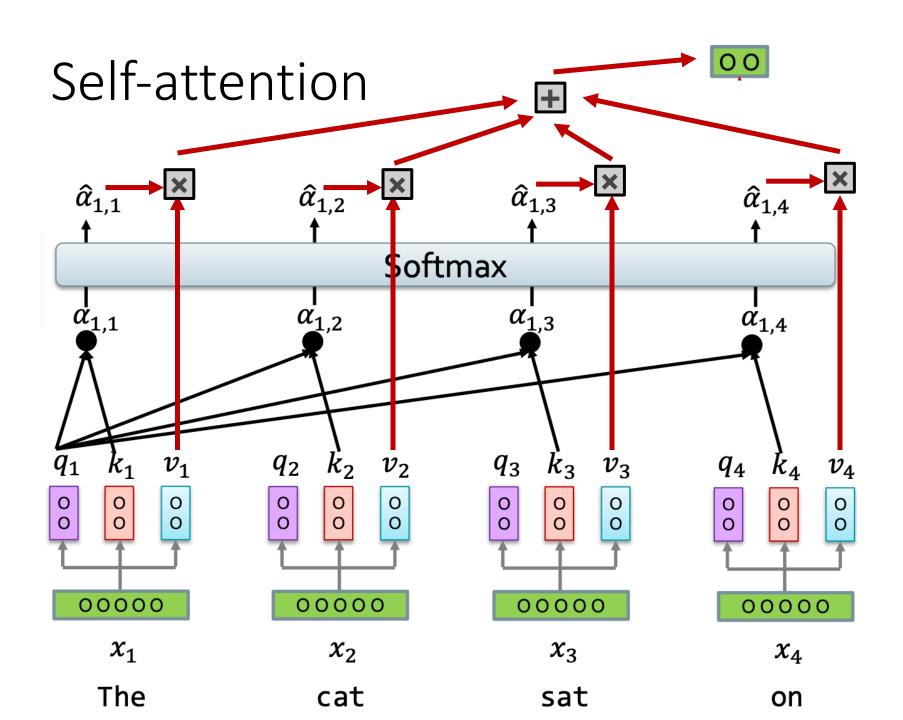
Daniel Khashabi



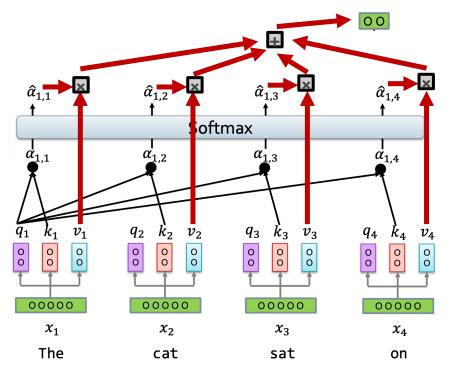




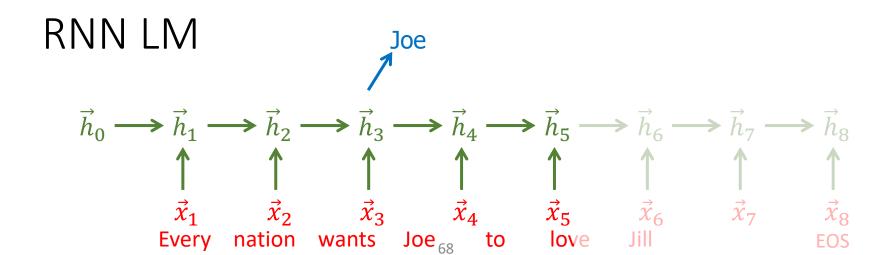


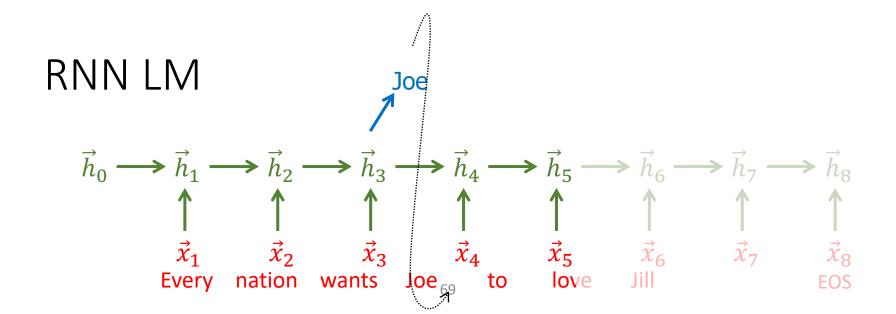


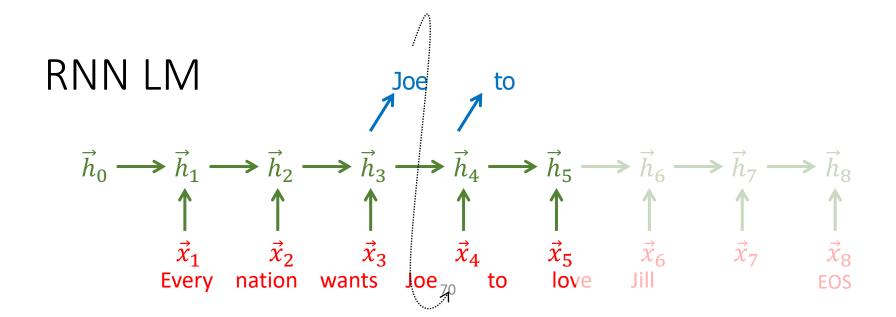
$$A = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

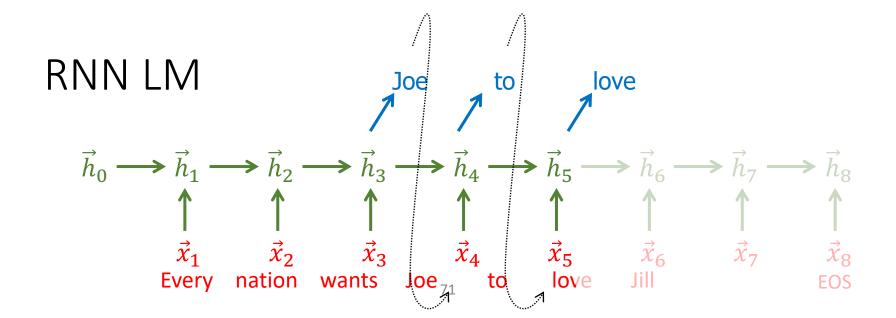


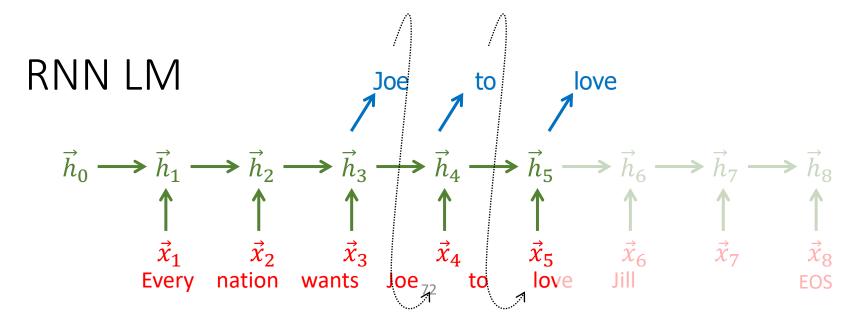
This is the main idea behind a **transformer**



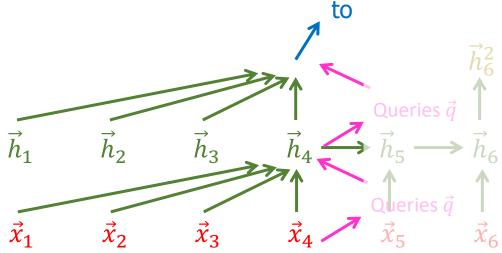




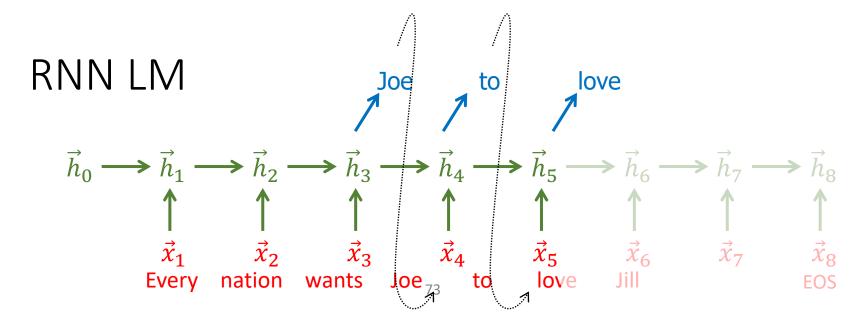




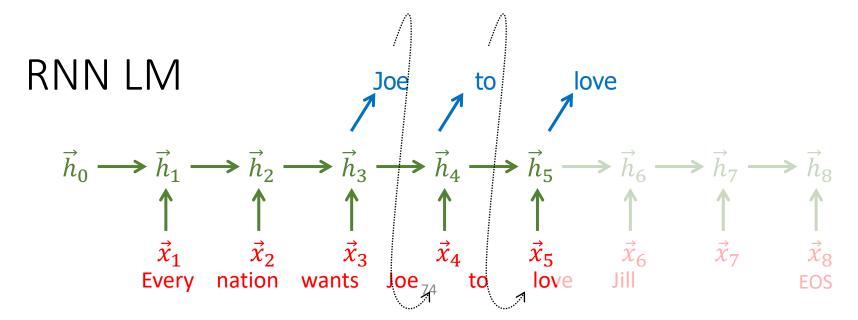
Transformer (self-attention) LM



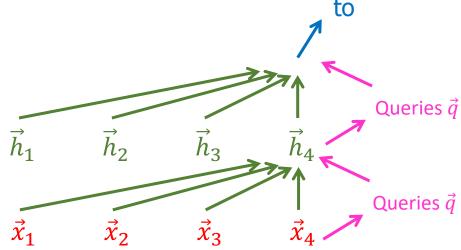
600.465 - Intro to NLP - J.



Transformer (self-attention) LM



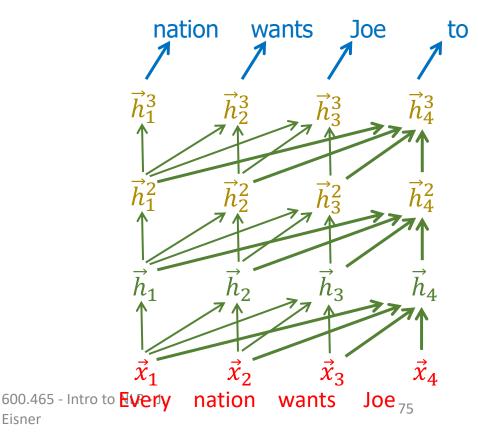
Transformer (self-attention) LM



600.465 - Intro to NLP - J.

Training can be parallelized

At training time, the whole sentence is known. Layer-L representations can be computed in parallel, with each word attending to the layer-(L-1) representations of itself and previous words



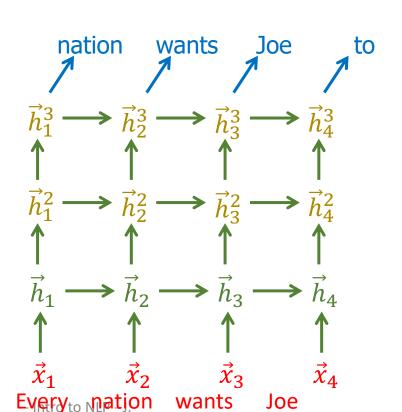
Eisner

(oops, to predict the very first word, we needed $\vec{x}_0 = < s > !$ It's missing from our diagrams.) Training, on GPU, per layer

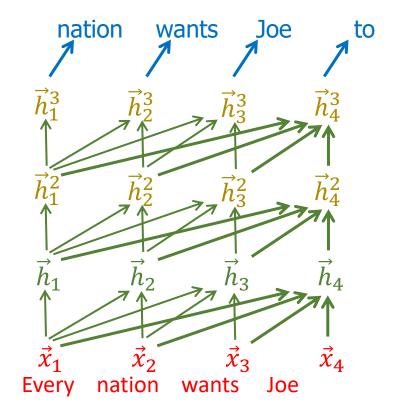
RNN vs. Transformer

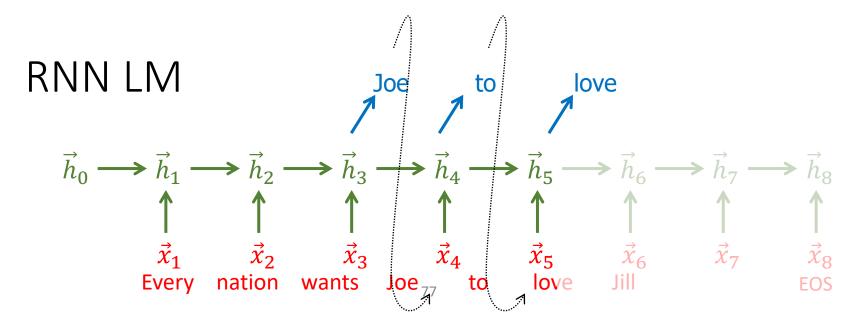
Computations: ⊕ O(n)

serial steps: \odot O(n) due to \longrightarrow

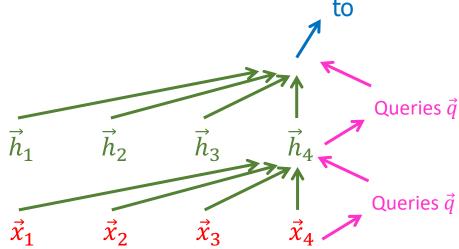


- ⊗ O(n²)
- O(1): all in parallel+ O(log n) to sum n inputs

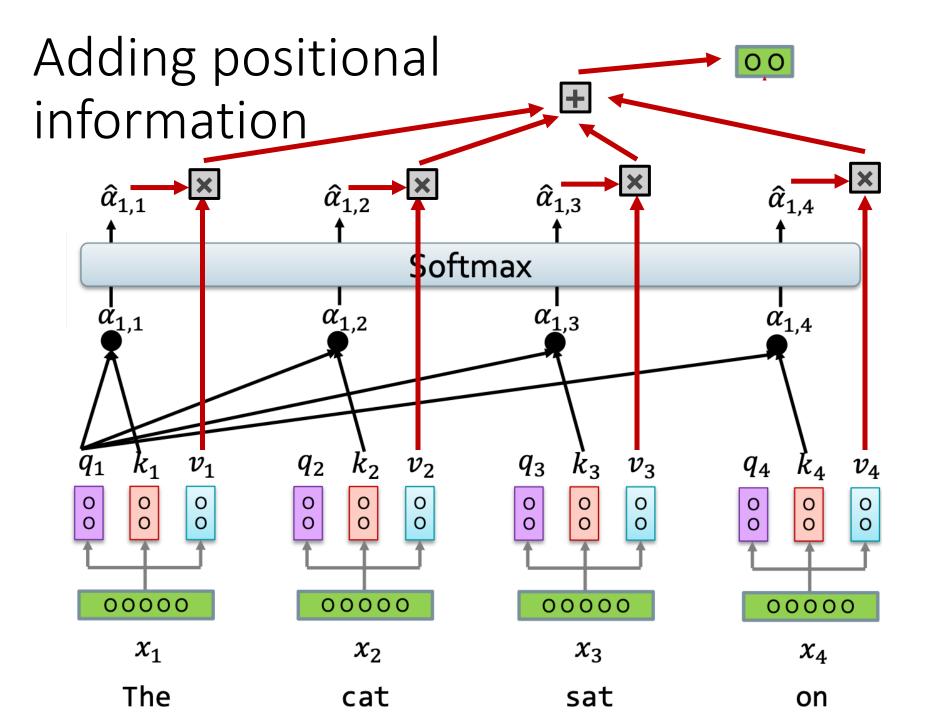


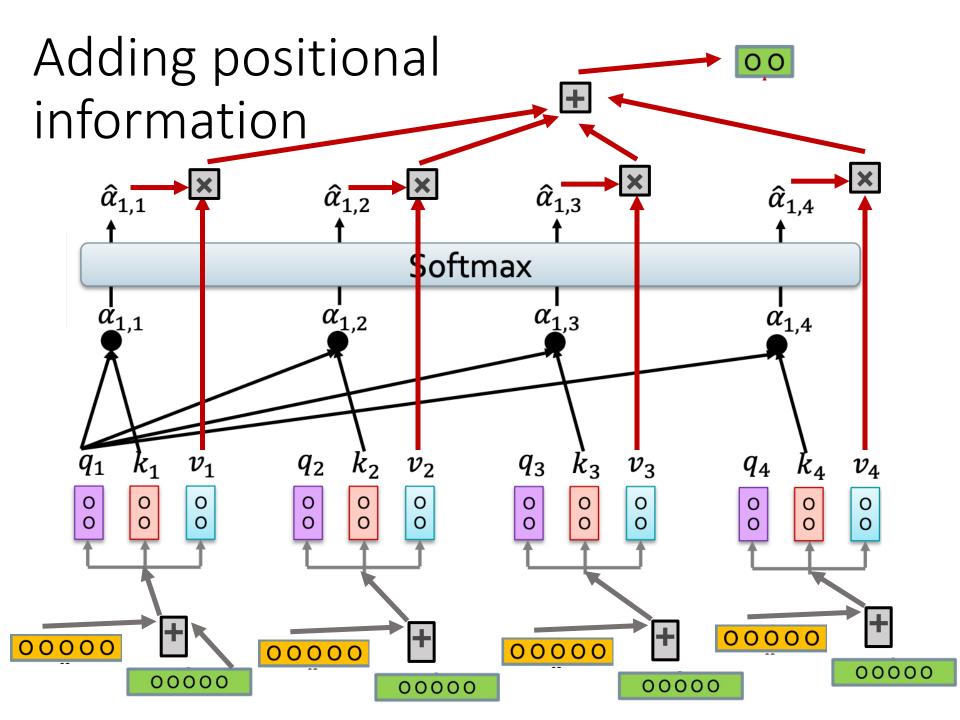


Transformer (self-attention) LM

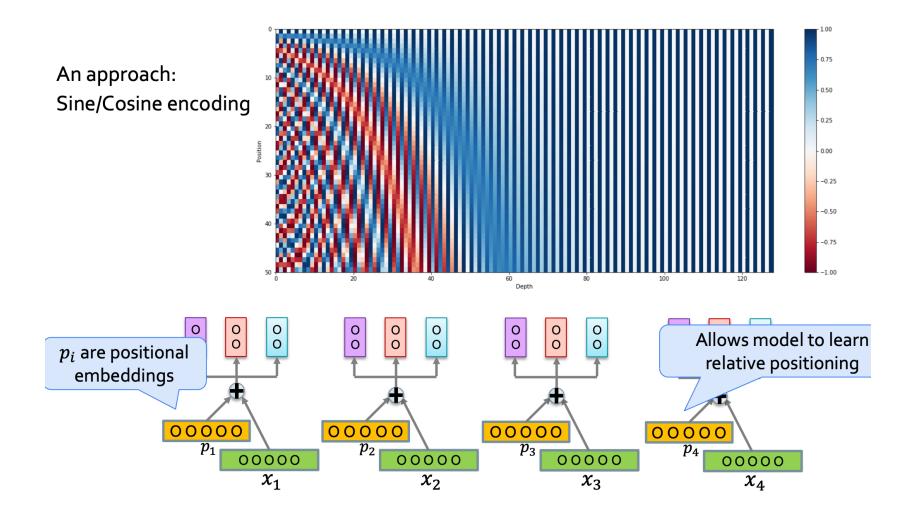


600.465 - Intro to NLP - J.

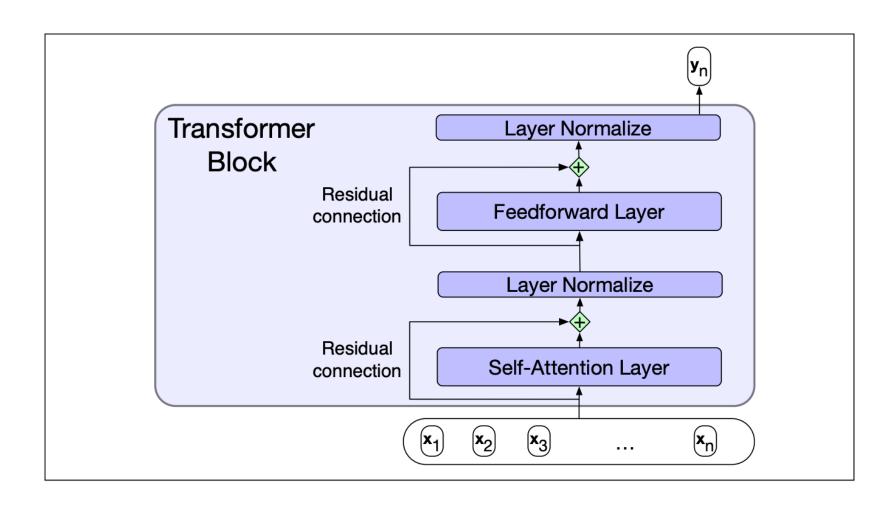




Adding positional information



Transformer block



Transformer block

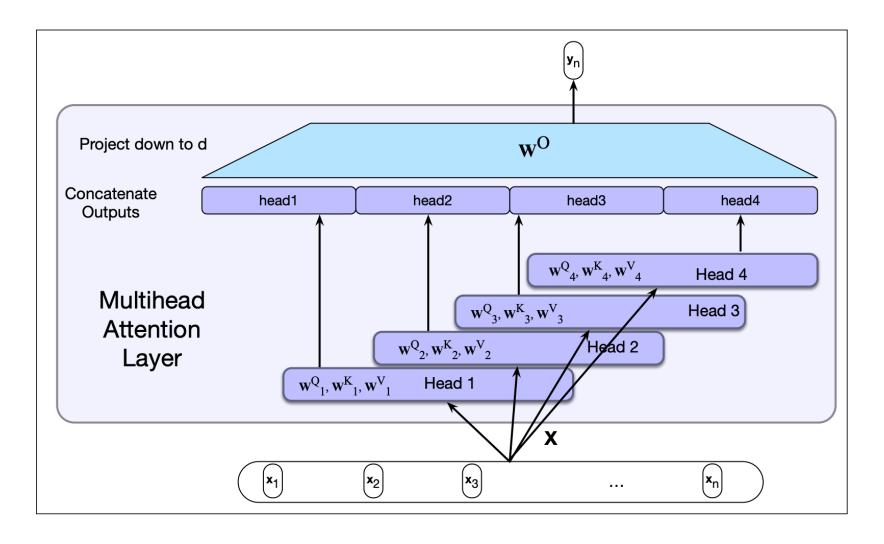
Residual connection:

 Passes information from a lower layer to a higher layer directly (w/out going through intermediate layers)

Layer normalization

- Ensures the values in a layer are in an appropriate range
- Based on normalization/z-scores in statistics (we'll cover normalization later this semester)

Multi-head attention



Transformers as LM

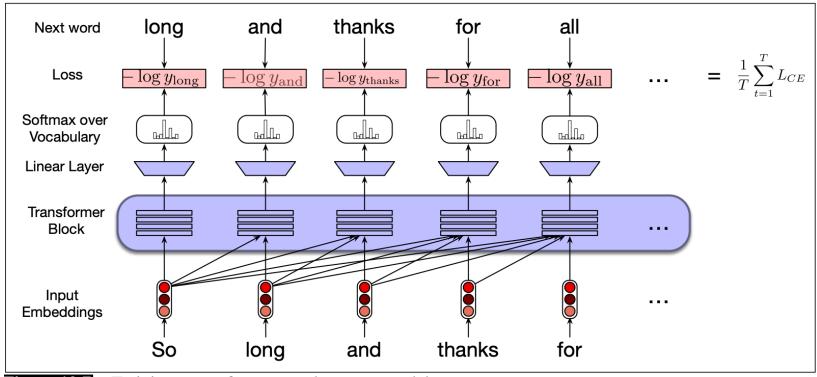


Figure 10.7 Training a transformer as a language model.

Training tansformers

parameters in transformer >> # parameters in LSTM

So, training requires a lot of data

We can pre-train a transformer, and then use it as a sentence-representation/feature extracter

Like in the probing work

Led to SoTA models

Next class

Pre-training and fine-tuning

- Examples of popular transformer models:
 - BERT: Bidirectional Encoder Representations from Transformersrmers (Google)
 - RoBERTa: Robustly Optimized BERT (Facebook)
 - GPT: Generative Pre-trained Transformer (OpenAI)

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)