
CS 383 – Computational
Text Analysis

Lecture 15
Attention & Transformers

Adam Poliak
03/15/2023

Slides adapted from Daniel Khashabi, Chris
Manning

Announcements
• Reading 05
• Due tonight

• HW06:
• Due Monday night
• Notebook from lab (plus two more questions)
• Logistic Regression in Pytorch

• More practice with Pytorch and data loading!

• Office hours this week:
• Normal Thursday slot

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)

Machine Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters
• Update weights by using them to make predictions and

seeing how far off our predictions are
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them

RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics

RNN internal

LSTM internal

LSTM internal

LSTMs success

In 2013–2015, LSTMs started achieving state-of-the-art
results

• SOTA in tasks like handwriting recognition, speech
recognition, machine translation, parsing, and image
captioning, LMs

• LSTMs became the dominant approach for most NLP tasks
until very recently

Since 2020, other approaches (e.g., Transformers) have
become dominant for many tasks
• WMT (Machine Translation conf + competition):

• In WMT 2016, the summary report contains “RNN” 44 times
• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

Chris Manning

Extracting representation from
RNN layer

Extracting representation from
RNN layer

Extracting representation from
RNN layer

Min pool implementation

tensor = torch.rand((100,20,300))
Creates a tensor of size:

torch.Size([100, 20, 300])

What might 100, 20, and 300 indicate if this is what
comes out of an RNN?

Min pool implementation

2 approaches in pytorch:

1. .mean()
2. torch.nn.functional.avg_pool2d
https://pytorch.org/docs/stable/generated/torch.nn.
functional.avg_pool2d.html#torch.nn.functional.avg_
pool2d

https://pytorch.org/docs/stable/generated/torch.nn.functional.avg_pool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.avg_pool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.avg_pool2d.html

Encoder-decoder

Decoder only uses information from last hidden cell!

Encoder-decoder in action

• https://lena-
voita.github.io/resources/lectures/seq2seq/general
/enc_dec_prob_idea.mp4

Lena Voita

Bottleneck

Last hidden cell is a bottleneck

Solution: Attention!
Core idea: on each step of the decoder, use direct
connection to the encoder to focus on a particular
part of the source sequence

Chris Manning
Attention is all you need Vaswani et al 2017

https://arxiv.org/pdf/1706.03762.pdf

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)

Seq2Seq Model

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Seq2Seq w/ Attention

Chris Manning

Attention pros!

• Significantly improves performance
• It’s very useful to allow decoder to focus on certain parts

of the source
• Solves the bottleneck problem
• Attention allows decoder to look directly at source;

bypass bottleneck
• Helps with vanishing gradient problem
• Provides shortcut to faraway states

• Provides some interpretability
• By inspecting attention distribution, we can see what

the decoder was focusing on

Interpretability

Attention pros!

• Significantly improves performance
• It’s very useful to allow decoder to focus on certain parts of

the source
• Solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass
bottleneck

• Hwith vanishing gradient problem
• Provides shortcut to faraway states

• Provides some interpretability
• By inspecting attention distribution, we can see what the

decoder was focusing on
• Can be applied to any neural model, not just decoder

Attention in a nutshell

For a new item, figure out how relevant each items is in a collection
of different items

W/o attention: we are just relying on a naïve summary of the
collection

Encoder-decoder setting:
• How relevant are all the words from the input to a single word in

the output

Encoder-MLP setting:
• How relevant are all the words from the input to our prediction

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)

Self-attention in a nutshell

Attention:
• For a new item, figure out how relevant items are

in a collection of different items

Self-attention
• How relevant are all the words from the input to a

single word in the input

Self-attention

Terminology

Query:
Key:
Value:

Terminology

Query: what to match
Key: the thing to match
Value: what to be extracted from the match

Daniel Khashabi

Terminology

Query: what to match
Key: the thing to match
Value: what to be extracted from the match

Daniel Khashabi

Terminology

Query: what to match:
𝑞! = 𝑊"𝑥!

Key: the thing to match:

Value: what to be extracted from the match

Daniel Khashabi

Terminology

Query: what to match:
𝑞! = 𝑊"𝑥!

Key: the thing to match:
𝑘! = 𝑊#𝑥!

Value: what to be extracted from the match
𝑣! = 𝑊$𝑥!

Daniel Khashabi

Output of each input cell

These are three representations of each input
Each representation is created by multiplying the
input by a weight matrix

Self-Attention Scores

When creating a representation for 𝑥!, how much
weight/focus/attention should we give to 𝑥%

∀𝑖, 𝑗 ∈ |𝑥| we must compute 𝑠𝑐𝑜𝑟𝑒(𝑥! , 𝑥%)

Self-Attention Scores

∀𝑖, 𝑗 ∈ |𝑥| we must compute 𝑠𝑐𝑜𝑟𝑒(𝑥! , 𝑥%)

Question: are these scores distance functions?
No! 𝑠𝑐𝑜𝑟𝑒(𝑥! , 𝑥%) shouldn’t be equal to 𝑠𝑐𝑜𝑟𝑒(𝑥! , 𝑥%)

Attention score

Attention score

𝑠𝑐𝑜𝑟𝑒 ℎ% , 𝑥! = ?

𝑞&! 𝑘&!

𝑥!

𝑞'" 𝑘'"

ℎ%

Attention score

𝑠𝑐𝑜𝑟𝑒 ℎ% , 𝑥! = 𝑞'" 6 𝑘&!

𝑞&! 𝑘&!

𝑥!

𝑞'" 𝑘'"

ℎ%

Attention score

𝑠𝑐𝑜𝑟𝑒 ℎ% , 𝑥! =
𝑞'" 6 𝑘&!

𝑑#

𝑞&! 𝑘&!

𝑥!

𝑞'" 𝑘'"

ℎ%

Attention Scores

𝐴!"#$% =
𝛼&,& ⋯ 𝛼&,(
⋮ ⋱ ⋮

𝛼),& ⋯ 𝛼),(

=
𝑠𝑐𝑜𝑟𝑒 ℎ&, 𝑥& ⋯ 𝑠𝑐𝑜𝑟𝑒 ℎ&, 𝑥(

⋮ ⋱ ⋮
𝑠𝑐𝑜𝑟𝑒 ℎ), 𝑥& ⋯ 𝑠𝑐𝑜𝑟𝑒 ℎ), 𝑥(

=

𝑞*! 0 𝑘+!
𝑑,

⋯
𝑞*! 0 𝑘+"

𝑑,
⋮ ⋱ ⋮

𝑞*# 0 𝑘+!
𝑑,

⋯
𝑞*# 0 𝑘+"

𝑑,

We can store all the q’s
and k’s in a matrix as well

Attention Scores

𝐴!"#$% =
𝛼&,& ⋯ 𝛼&,(
⋮ ⋱ ⋮

𝛼),& ⋯ 𝛼),(

=

𝑞*! / 𝑘+!
𝑑,

⋯
𝑞*! / 𝑘+"

𝑑,
⋮ ⋱ ⋮

𝑞*# / 𝑘+!
𝑑,

⋯
𝑞*# / 𝑘+"

𝑑,

𝐴!"#$% =
𝑄𝐾-

𝑑,

We can store all the q’s
and k’s in a matrix as well

Attention score

𝑠𝑐𝑜𝑟𝑒 ℎ% , 𝑥! =
𝑞'" 6 𝑘&!

𝑑#

𝐴45678 =
𝑄𝐾9

𝑑#

𝑞&! 𝑘&!

𝑥!

𝑞'" 𝑘'"

ℎ%

Attention

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾9

𝑑#
)

𝑞&! 𝑘&!

𝑥!

𝑞'" 𝑘'"

ℎ%

Self-attention

When creating a representation for 𝑥!, how much
weight/focus/attention should we give to 𝑥%

Self-attention

When creating a representation for 𝑥:, how much
weight/focus/attention should we give to 𝑥%

Self-attention

𝛼$,$

Self-attention

𝛼$,$

Self-attention

𝛼$,$ 𝛼&,$

Self-attention

𝛼$,$ 𝛼&,$

Self-attention

𝛼$,$ 𝛼$,& 𝛼$,'

Self-attention

Daniel Khashabi

Self-attention
Daniel Khashabi

Self-attention

Self-attention

✖ ✖ ✖ ✖

Self-attention

✖ ✖ ✖ ✖

➕

Self-attention

✖ ✖ ✖ ✖

➕

Self-attention

✖ ✖ ✖ ✖

➕

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾9

𝑑#
𝑉

This is the main idea
behind a transformer

RNN LM

600.465 - Intro to NLP - J.
Eisner

68

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

Joe

RNN LM

600.465 - Intro to NLP - J.
Eisner

69

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

Joe

RNN LM

600.465 - Intro to NLP - J.
Eisner

70

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

toJoe

RNN LM

600.465 - Intro to NLP - J.
Eisner

71

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

toJoe love

RNN LM

600.465 - Intro to NLP - J.
Eisner

72

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

toJoe love

Transformer (self-attention) LM

ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3

�⃗�& �⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3

ℎ3/
to

Queries �⃗�

Queries �⃗�

RNN LM

600.465 - Intro to NLP - J.
Eisner

73

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

toJoe love

Transformer (self-attention) LM

Queries �⃗�

RNN LM

600.465 - Intro to NLP - J.
Eisner

74

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

toJoe love

Transformer (self-attention) LM

ℎ& ℎ/ ℎ0 ℎ1

�⃗�& �⃗�/ �⃗�0 �⃗�1

to

Queries �⃗�

Training can be parallelized

600.465 - Intro to NLP - J.
Eisner

75

ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

ℎ5/ℎ4/

ℎ50ℎ40

At training time, the whole sentence is known.
Layer-L representations can be computed in parallel, with each word
attending to the layer-(L-1) representations of itself and previous words

ℎ& ℎ/ ℎ0 ℎ1

ℎ&/ ℎ// ℎ0/ ℎ1/

ℎ&0 ℎ/0 ℎ00 ℎ10

Joe towantsnation (oops, to predict the very first
word, we needed �⃗�. =< s >!

It’s missing from our diagrams.)

RNN vs. Transformer

600.465 - Intro to NLP - J.
Eisner

76

600.465 - Intro to NLP - J. Eisner 76

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4

ℎ./ ℎ&/ ℎ5/ℎ// ℎ0/ ℎ1/ ℎ2/ ℎ3/ ℎ4/

ℎ.0 ℎ&0 ℎ50ℎ/0 ℎ00 ℎ10 ℎ20 ℎ30 ℎ40

Joe towantsnation

Every nation wants Joe
�⃗�& �⃗�/ �⃗�0 �⃗�1

Every nation wants Joe to love Jill

ℎ& ℎ/ ℎ0 ℎ1

ℎ&/ ℎ// ℎ0/ ℎ1/

ℎ&0 ℎ/0 ℎ00 ℎ10

Joe towantsnation

Computations: J O(n) L O(n2)
serial steps: L O(n) due to J O(1): all in parallel

+ O(log n) to sum n inputs

Training,
on GPU,
per layer

Queries �⃗�

RNN LM

600.465 - Intro to NLP - J.
Eisner

77

ℎ. ℎ& ℎ/ ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

�⃗�& �⃗�5�⃗�/ �⃗�0 �⃗�1 �⃗�2 �⃗�3 �⃗�4
Every nation wants Joe to love Jill EOS

toJoe love

Transformer (self-attention) LM

ℎ& ℎ/ ℎ0 ℎ1

�⃗�& �⃗�/ �⃗�0 �⃗�1

to

Queries �⃗�

Adding positional
information

✖ ✖ ✖ ✖

➕

Adding positional
information

✖ ✖ ✖ ✖

➕

➕ ➕ ➕
➕

Adding positional
information

Transformer block

Transformer block

Residual connection:
• Passes information from a lower layer to a higher

layer directly (w/out going through intermediate
layers)

Layer normalization
• Ensures the values in a layer are in an appropriate

range
• Based on normalization/z-scores in statistics (we’ll

cover normalization later this semester)

Multi-head attention

Transformers as LM

Training tansformers

parameters in transformer >> # parameters in LSTM

So, training requires a lot of data

We can pre-train a transformer, and then use it as a
sentence-representation/feature extracter

Like in the probing work

Led to SoTA models

Next class

• Pre-training and fine-tuning

• Examples of popular transformer models:
• BERT: Bidirectional Encoder Representations from

Transformersrmers (Google)
• RoBERTa: Robustly Optimized BERT (Facebook)
• GPT: Generative Pre-trained Transformer (OpenAI)

Outline

Recap – RNNs, Seq2Seq

Attention

Self-attention

Transformer

Pytorch demo (if time)

