
CS 383 – Computational Text
Analysis

Lecture 14
LSTMs, Sentence-
Representations, Probing,
Attention

Adam Poliak
03/13/2023

Slides adapted from Jordan Boyd-Graber,
Daniel Khashabi, Yoav Goldberg, Chris
Manning

Announcements
• Reading 05
• CTA/TADA/CSS papers using Word Embeddings
• Look at piazza for deadline – Wednesday after spring

break
• No programming portion

• Reading 06
• Will be back to Mondays

• Office hours this week:
• Normal Thursday slot

Outline

Recap - RNNs

LSTM

Sentence Representations/Probing

Attention

Transformer

Machine Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters
• Update weights by using them to make predictions and

seeing how far off our predictions are
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them

RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics

RNN internal

How else can we expand this?

Bi-directional

Stack more layers

Pytorch - nn.RNN

Recap: RNN’s: Pros and Cons

Pros:
• Model size doesn’t

increase for longer
inputs.
• Reusing same

parameters

• Computation can use
information from many
previous steps

Cons:
• Slow computation

• Can forget longer
history/context

• Vanishing/exploding
gradients

RNNs – long input

RNNs can remember anything (in theory)

Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)

Outline

Recap - RNNs

LSTM

Sentence Representations

Attention

Transformer

RNN internal

LSTM internal

LSTM internal

LSTM’s rely on gates

• Multiply input by value in 0,1]
• Zero means forget everything
• 1 means carry everything

through (unchanged)

• 4 gates used in LSTM

LSTM gates: cell state

• Passes the memory through the cell

LSTM gates: forget

• Can decide to forget the previous state ℎ!"#

LSTM gates: update

• Compute new contribution to cell state based on
hidden state and input.

LSTM gates: update (interpolate)

• Can decide to forget the previous state ℎ!"#

LSTM output (hidden)

LSTM internal

Pytorch - nn.LSTM

Extracting representation from
RNN layer

How might we combine the output layers

Extracting representation from
RNN layer

Extracting representation from
RNN layer
Transducer
• Create an output for each input

Extracting representation from
RNN layer
Acceptor/encoder
• Take the output of the last cell

RNNs applied to NLP tasks

Encoder-Decoder model
Called seq2seq model when encoder sequence and decode a sequence

Encoder-Decoder model

We can view 𝑦5 as the vector representation of our
input/sentence

Outline

Recap - RNNs

LSTM

Sentence Representations/Probing

Attention

Transformer

Conneaue et al 2018

Trained NN’s to:
• Translate text
• Predict the next sentence
• Determine if one sentence can be inferred from

another (Natural Language Inference)
• Random encoder as baseline

Conneaue et al 2018

Used representations from these encoder to predict
• Surface form information:
• The length of the sentence

• Syntactic information:
• If two words in a sentence have been swapped

• “What you are doing out there?” (Bshift)

• Semantic information:
• Tense
• Semantic Odd Man Out

• Replaced random verb or noun in a sentence

Conneaue et al 2018

1. Train a neural
model

2. Extract sentence representations
from trained neural encoder

3. Train and
test
classifier on
probing
dataset

3. Train and
test
classifier on
probing
dataset

2. Extract sentence representations
from trained neural encoder

1. Train a neural
model

https://direct.mit.edu/coli/article-abstract/48/1/207/107571

https://direct.mit.edu/coli/article-abstract/48/1/207/107571

Encoder-decoder

Decoder only uses information from last hidden cell!

Outline

Recap - RNNs

LSTM

Sentence Representations/Probing

Attention

Transformer

Bottleneck

Last hidden cell is a bottleneck

Solution: Attention!

• solution to the bottleneck problem

• Core idea: on each step of the decoder, use direct
connection to the encoder to focus on a particular
part of the source sequence

Chris Manning

Have we been cramming?
• RNNs etc. – decide early what to keep
• Encode context into ℝ!
• Hope it supports later decoding needs

• E.g., any reading comprehension question

• Attention – keep it all, decide later what to look at
• At each decoding step, get to look back at all of the

n encoded context objects, each in ℝ!
• Take a weighted average of them, where the weights depend

on a query created at decoding time
• This average “completes the encoding” into ℝ$

600.465 - Intro to NLP - J.
Eisner

61

let 𝜶 = softmax(?)

Attention

600.465 - Intro to NLP - J.
Eisner

62

ℎ!

�⃗�!

ℎ"

�⃗�"

ℎ#

�⃗�#

�⃗�! �⃗�" �⃗�#

…

𝛼"𝒗" + …+ 𝛼#𝒗#
𝛼! 𝛼" 𝛼#

�⃗�

let 𝜶 = softmax(�⃗� ⋅ 𝑘", …, �⃗� ⋅ 𝑘#)

𝑘! 𝑘" 𝑘#

…

Decides what to
look at! If 𝜶 =

(0.01,0.97,0.01,…)
then we’re mostly

attending to �⃗�$ and
just copying its

value �⃗�$.

SGD may adjust 𝜶
to look more at �⃗�%

if moving the
output toward �⃗�%
would help loss.

values �⃗�$
keys 𝑘$

query �⃗�

Uses of Attention
• Which input word to translate next?
• Which input word to copy next?
• Which database record to look at?
• Which part of the image to look at?
• Which document from the corpus to look at?
• (fast data structures for Maximum Inner Product Search)

• Can encode an unordered bag of objects, of any size, in a
way that’s determined by a query
• Use this contextual encoding within a larger model

600.465 - Intro to NLP - J.
Eisner

63

Multiple
“heads”

600.465 - Intro to NLP - J.
Eisner

64

ℎ!

�⃗�!

ℎ"

�⃗�"

ℎ#

�⃗�#

𝑘! �⃗�! 𝑘" �⃗�" 𝑘# �⃗�#

…

�⃗�

… Many parameters:
Each “attention head”

uses its own linear
projection matrices to

extract keys and values

and to construct the
queries from the

current prediction task

Look for several objects �⃗�$ that
are relevant in different ways
and extract their relevant info

𝜶𝜶𝜶
𝜶

Concatenate the
result vectors, then

multiply by one more
matrix to reduce
dimensionality

Now pass through an
MLP to get our query-
specific encoding of
the context {𝑥!, … , �⃗�#}

Uses of Attention
• Which input word to translate next?
• Which input word to copy next?
• Which constituent / named entity to look at?
• Which database record to look at?
• Which part of the image to look at next?
• Which document from the corpus to look at?

• Can encode an unordered bag of objects, of any size, in a
way that’s determined by a query
• Use this contextual encoding within a larger model
• Transformer architecture: “Attention is all you need”

600.465 - Intro to NLP - J.
Eisner

65

RNN LM

600.465 - Intro to NLP - J.
Eisner

ℎ$ ℎ! ℎ" ℎ% ℎ& ℎ' ℎ(ℎ) ℎ*

�⃗�! �⃗�*�⃗�" �⃗�% �⃗�& �⃗�' �⃗�(�⃗�)
Every nation wants Joe to love Jill EOS

ℎ$" ℎ!" ℎ*"ℎ"" ℎ%" ℎ&" ℎ'" ℎ(" ℎ)"

ℎ$% ℎ!% ℎ*%ℎ"% ℎ%% ℎ&% ℎ'% ℎ(% ℎ)%

Joe

Every nation wants 66

RNN LM

600.465 - Intro to NLP - J.
Eisner

67

ℎ$ ℎ! ℎ" ℎ% ℎ& ℎ' ℎ(ℎ) ℎ*

�⃗�! �⃗�*�⃗�" �⃗�% �⃗�& �⃗�' �⃗�(�⃗�)
Every nation wants Joe to love Jill EOS

ℎ$" ℎ!" ℎ*"ℎ"" ℎ%" ℎ&" ℎ'" ℎ(" ℎ)"

ℎ$% ℎ!% ℎ*%ℎ"% ℎ%% ℎ&% ℎ'% ℎ(% ℎ)%

toJoe

Every nation wants Joe

RNN LM

600.465 - Intro to NLP - J.
Eisner

68

ℎ$ ℎ! ℎ" ℎ% ℎ& ℎ' ℎ(ℎ) ℎ*

�⃗�! �⃗�*�⃗�" �⃗�% �⃗�& �⃗�' �⃗�(�⃗�)
Every nation wants Joe to love Jill EOS

ℎ$" ℎ!" ℎ*"ℎ"" ℎ%" ℎ&" ℎ'" ℎ(" ℎ)"

ℎ$% ℎ!% ℎ*%ℎ"% ℎ%% ℎ&% ℎ'% ℎ(% ℎ)%

toJoe love

Transformer LM (e.g., GPT-3)

600.465 - Intro to NLP - J.
Eisner

69

ℎ! ℎ" ℎ% ℎ& ℎ' ℎ(ℎ) ℎ*

�⃗�! �⃗�*�⃗�" �⃗�% �⃗�& �⃗�' �⃗�(�⃗�)
Every nation wants Joe to love Jill EOS

ℎ!" ℎ*"ℎ"" ℎ%" ℎ&" ℎ'" ℎ(" ℎ)"

ℎ!% ℎ*%ℎ"% ℎ%% ℎ&% ℎ'% ℎ(% ℎ)%

to

Joe is repeatedly transformed to consider more and more context.
Joe’s current representation tells the heads how to query all the words in the

current layer. Each head’s query returns an averaged value. Those answers are
concatenated and go thru MLP to get Joe’s transformed representation. Repeat!

Queries �⃗�
(determin
e coeffs
a)

Queries �⃗�

Queries �⃗�

Attention looks
at these

representations
of the previous
words, which
were obtained
in same way
while making

previous
predictions.

Their keys/vals
are unchanged.

For some other missing details: Check out
“The Illustrated Transformer” by Jay Alammar

(Actually, the
transformed
representation is the
old representation
plus the MLP output.
Like a residual RNN.)

https://jalammar.github.io/illustrated-transformer/

Training can be parallelized

600.465 - Intro to NLP - J.
Eisner

70

ℎ(ℎ) ℎ*

�⃗�! �⃗�*�⃗�" �⃗�% �⃗�& �⃗�(�⃗�)
Every nation wants Joe to love Jill EOS

ℎ*"ℎ)"

ℎ*%ℎ)%

At training time, the whole sentence is known.
Layer-L representations can be computed in parallel, with each word
attending to the layer-(L-1) representations of itself and previous words

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

Joe towantsnation (oops, to predict the very first
word, we needed �⃗�$ =< s >!

It’s missing from our diagrams.)

RNN vs. Transformer

600.465 - Intro to NLP - J.
Eisner

71

600.465 - Intro to NLP - J. Eisner 71

ℎ$ ℎ! ℎ" ℎ% ℎ& ℎ' ℎ(ℎ) ℎ*

�⃗�! �⃗�*�⃗�" �⃗�% �⃗�& �⃗�' �⃗�(�⃗�)

ℎ$" ℎ!" ℎ*"ℎ"" ℎ%" ℎ&" ℎ'" ℎ(" ℎ)"

ℎ$% ℎ!% ℎ*%ℎ"% ℎ%% ℎ&% ℎ'% ℎ(% ℎ)%

Joe towantsnation

Every nation wants Joe
�⃗�! �⃗�" �⃗�% �⃗�&

Every nation wants Joe to love Jill

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

Joe towantsnation

Computations: J O(n) L O(n2)
serial steps: L O(n) due to J O(1): all in parallel

+ O(log n) to sum n inputs

Training,
on GPU,
per layer

Transformer encoder

600.465 - Intro to NLP - J.
Eisner

72

• A decoder (LM) mustn’t peek ahead at words it’s trying to predict
• But an encoder is given all the words at the start
• So a word in one layer can look at all words in previous layers
• Now we get highly contextual top-level encodings of all input words

ℎ)

�⃗�! �⃗�" �⃗�% �⃗�& �⃗�)
Every nation wants Joe to love Jill

ℎ)"

ℎ)%

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

ℎ(

�⃗�(

ℎ("

ℎ(%

ℎ'

�⃗�'

ℎ'"

ℎ'%

For some missing details: Check out
“The Illustrated Transformer” by Jay Alammar

https://jalammar.github.io/illustrated-transformer/

Transformer seq2seq

73

ℎ)

�⃗�! �⃗�" �⃗�% �⃗�& �⃗�)
Every nation wants Joe to love Jill

ℎ)"

ℎ)%

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

ℎ(

�⃗�(

ℎ("

ℎ(%

ℎ'

�⃗�'

ℎ'"

ℎ'%

encoder self-attention
(shown only at time 4)

�⃗�! �⃗�" �⃗�% �⃗�&
Chaque nation veut que …

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

que Joeveutnation

decoder self-attention

For some missing details: Check out
“The Illustrated Transformer” by Jay Alammar

Encoder-decoder cross-attention:
• Each decoder token looks at all encoder tokens
• All layers of decoder look at top layer of encoder
• Diagram shows dec time 2 looking at enc time 4
• Use distinct heads for self- and cross-att
• Or alternate self-att and cross-att layers

https://jalammar.github.io/illustrated-transformer/

Positional embeddings
• Attention doesn’t see the order of the words.
• One standard solution:
• Replace input �⃗�% with �⃗�%+�⃗�%
• Vector �⃗�% encodes “position 4”
• Vector �⃗�% encodes the word at that position
• Attention sees both: e.g., the �⃗� ⋅ 𝑘% logit (attention on input 4)

will be a sum of logits from �⃗�% and �⃗�%
• There’s a standard sinusoidal scheme for constructing the vectors
�⃗�$ so we don’t have to learn them – they’re fixed

600.465 - Intro to NLP - J.
Eisner

74

