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Announcements

* Reading 05
* CTA/TADA/CSS papers using Word Embeddings

* Look at piazza for deadline — Wednesday after spring
break

* No programming portion

* Reading 06
* Will be back to Mondays

e Office hours this week:
* Normal Thursday slot
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Machine Learning in a nutshell

In a ML model, what are we training?
* Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters

* Update weights by using them to make predictions and
seeing how far off our predictions are

* Loss function!

Algorithm to learn weights?
* SGD
* Others exist but not covering them



RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics



RNN internal
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How else can we expand this?
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Bi-directional
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Stack more layers
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Pytorch - nn.RNN

Parameters:

e input_size - The number of expected features in the input x

¢ hidden_size - The number of features in the hidden state h

e num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and
computing the final results. Default: 1

¢ nonlinearity - The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'

e bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

e batch_first - If True, then the input and output tensors are provided as (batch, seq, feature) instead
of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs
sections below for details. Default: False

e dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last
layer, with dropout probability equal to dropout. Default: 0

¢ bidirectional - If True, becomes a bidirectional RNN. Default: False



Recap: RNN’s: Pros and Cons

Pros:

* Model size doesn’t
increase for longer
inputs.

* Reusing same
parameters

 Computation can use
information from many
previous steps

Cons:
e Slow computation

* Can forget longer
history/context

* Vanishing/exploding
gradients



RNNs —long input

RNNs can remember anything (in theory)
Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)
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RNN internal




LSTM internal
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LSTM internal

Sj = RLSTM(Sj—l9xj) =[CJ’hJ]
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LSTM’s rely on gates
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* Multiply input by value in 0,1]
e Zero means forget everything

* 1 means carry everything
through (unchanged)

* 4 gates used in LSTM



LSTM gates: cell state

* Passes the memory through the cell



LSTM gates: forget

* Can decide to forget the previous state h;_,

ft =0 (Wys-|hi—1,2:] + by)




LSTM gates: update

 Compute new contribution to cell state based on
hidden state and input.

it =0 (Wi-lhe—1,2¢] + b;)
i ét — tanh(WC'[ht_l,ZC‘t] -+ bc)




LSTM gates: update (interpolate)

* Can decide to forget the previous state h;_,
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LSTM output (hidden)

Ot — J(Wo [ht—lamt] =+ bo)
ht = Ot * tanh (Ct)




LSTM internal
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Pytorch - nn.LSTM

Parameters:

input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM
and computing the final results. Default: 1

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first - If True, then the input and output tensors are provided as (batch, seq, feature) instead
of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs
sections below for details. Default: False

dropout - If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last
layer, with dropout probability equal to dropout. Default: 0

bidirectional - If True, becomes a bidirectional LSTM. Default: False

proj_size - If > 0, will use LSTM with projections of corresponding size. Default: 0



Extracting representation from
RNN layer
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Extracting representation from
RNN layer

How might we combine the output layers




Extracting representation from
RNN layer

Transducer
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Extracting representation from
RNN layer

Acceptor/encoder
* Take the output of the last cell <,l°ss
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RNNs applied to NLP tasks

many to one many to many many to many

Text Classification Language Modeling POSTags



Encoder-Decoder model

Called seq2seq model when encoder sequence and decode a sequence
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Encoder-Decoder model

We can view y5 as the vector representation of our
input/sentence loss
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FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Yossi Adi''2, Einat Kermany?, Yonatan Belinkov?, Ofer Lavi2, Yoav Goldberg'

FER U S RO AN O L W § oy §

There is a lot of research interest in encoding variable length sentences into fixed
length vectors, in a way that preserves the sentence meanings. Two common
methods include representations based on averaging word vectors, and represen-
tations based on the hidden states of recurrent neural networks such as LSTM:s.
The sentence vectors are used as features for subsequent machine learning tasks
or for pre-training in the context of deep learning. However, not much is known
about the properties that are encoded in these sentence representations and about
the language information they capture.

We propose a framework that facilitates better understanding of the encoded rep-
resentations. We define prediction tasks around isolated aspects of sentence struc-
ture (namely sentence length, word content, and word order), and score repre-
sentations by the ability to train a classifier to solve each prediction task when
using the representation as input. We demonstrate the potential contribution of the
approach by analyzing different sentence representation mechanisms. The analy-
sis sheds light on the relative strengths of different sentence embedding methods
with respect to these low level prediction tasks, and on the effect of the encoded
vector’s dimensionality on the resulting representations.



What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

Alexis Conneau German Kruszewski Guillaume Lample
Facebook AI Research Facebook AI Research Facebook AI Research
Université Le Mans germank@fb.com Sorbonne Universités
aconneau@fb.com glample@fb.com
Loic Barrault Marco Baroni

Université Le Mans Facebook AI Research
loic.barrault@univ-lemans. fr mbaroni@fb.com

Abstract

Although much effort has recently been devoted to training high-quality sentence embeddings, we still have a poor
understanding of what they are capturing. “Downstream” tasks, often based on sentence classification, are commonly
used to evaluate the quality of sentence representations. The complexity of the tasks makes it however difficult to infer
what kind of information is present in the representations. We introduce here 10 probing tasks designed to capture
simple linguistic features of sentences, and we use them to study embeddings generated by three different encoders
trained in eight distinct ways, uncovering intriguing properties of both encoders and training methods.



Conneaue et al 2018

Trained NN’s to:
* Translate text

* Predict the next sentence

* Determine if one sentence can be inferred from
another (Natural Language Inference)

e Random encoder as baseline



Conneaue et al 2018

Used representations from these encoder to predict

e Surface form information:
* The length of the sentence

 Syntactic information:
* If two words in a sentence have been swapped
* “What you are doing out there?” (Bshift)
* Semantic information:

* Tense
e Semantic Odd Man Out

* Replaced random verb or noun in a sentence



Conneaue et al 2018
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Probing Classifiers: Promises, Shortcomings,
and Advances

Yonatan Belinkov*
Technion — Israel Institute of Technology
belinkov@technion.ac.il

Probing classifiers have emerged as one of the prominent methodologies for interpreting and
analyzing deep neural network models of natural language processing. The basic idea is simple—
a classifier is trained to predict some linguistic property from a model’s representations—and
has been used to examine a wide variety of models and properties. However, recent studies have
demonstrated various methodological limitations of this approach. This squib critically reviews
the probing classifiers framework, highlighting their promises, shortcomings, and advances.

https://direct.mit.edu/coli/article-abstract/48/1/207/107571



https://direct.mit.edu/coli/article-abstract/48/1/207/107571

Encoder-decoder

Decoder only uses information from last hidden cell!
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Bottleneck

Last hidden cell is a bottleneck
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Solution: Attention!

* solution to the bottleneck problem

* Core idea: on each step of the decoder, use direct
connection to the encoder to focus on a particular
part of the source sequence



Have we been cramming?

* RNNs etc. — decide early what to keep
e Encode context into R%

* Hope it supports later decoding needs
e E.g., any reading comprehension question

* Attention — keep it all, decide later what to look at

* At each decoding step, get to look back at all of the
n encoded context objects, each in R4

* Take a weighted average of them, where the weights depend
on a query created at decoding time

* This average “completes the encoding” into R4
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Attention

query g I let a = softmax(g - kq, ..., 4 - k,,)

keys k; Decid hat t
v+ o+ a,v, ecides what 1o

values v; look at! If a =
/ / “ \ (0.01,0.97,0.01,...)
then we're mostly
attending to x, and

just copying its
value v,.

SGD may adjust a
to look more at x;
if moving the
output toward v
600.465 - Intro to NLP - J. - would h6|p loss.

Eisner




Uses of Attention

 Which input word to translate next?
* Which input word to copy next?

* Which database record to look at?

* Which part of the image to look at?

* Which document from the corpus to look at?
* (fast data structures for Maximum Inner Product Search)

* Can encode an unordered bag of objects, of any size, in a
way that’s determined by a query

e Use this contextual encoding within a larger model



specific encoding of = g
the context {x;, ..., %,,}

Multiple
“heads”

Concatenate the
result vectors, then
multiply by one more
matrix to reduce
dimensionality
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- Now pass through an
I MLP to get our query- ‘

Look for several objects x; that
are relevant in different ways
and extract their relevant info
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Uses of Attention

Which input word to translate next?

Which input word to copy next?

Which constituent / named entity to look at?
Which database record to look at?
Which part of the image to look at next?

AT A R SEVES bt Ml

Which document from the corpus to look at?

* Can encode an unordered bag of objects, of any size, in a
way that’s determined by a query

e Use this contextual encoding within a larger model
* Transformer architecture: “Attention is all you need”

600.465 - Intro to NLP - J.
Eisner

65



RNN LM
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RNN LM
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RNN LM

Joe to love
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For some other missing details: Check out
“The Illustrated Transformer™ by Jay Alammar

Transformer LM (e.g., GPT-3)

Joe is repeatedly transformed to consider more and more context.

Joe’s current representation tells the heads how to query a//the words in the

current layer.

Each head’s query returns an

value. Those answers are

concatenated and go thru MLP to get Joe’s transformed representation. Repeat!

Attention looks
at these
representations
of the previous
words, which
were obtained
in same way
while making
previous
predictions.
Their keys/vals
are unchanged.

/ to
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Eisner

Joe

(Actually, the
transformed
representation is the
old representation
plus the MLP output.
Like a residual RNN.)


https://jalammar.github.io/illustrated-transformer/

Training can be parallelized

At training time, the whole sentence is known.
Layer-L representations can be computed in parallel, with each word
attending to the layer-(L-1) representations of itself and previous words

nation wants Joe to  (oops, to predict the very first

/ / / / word: we needed Xy =< s >!

h3 R It's missing from our diagrams.)
W 1
W 1
=

X1 X2 X3 X4

600.465 - Intro to EVepy  nation wants  Joe.,
Eisner
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Training,

oncri, RNN vs. Transformer

per layer
Computations: © O(n) ® 0(n2)
# serial steps: ® O(n) dueto —  © O(1): all /™ in parallel

+ O(log n) to sum n inputs
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The Illustrated Transformer

Transformer encoder

A decoder (LM) mustn’t peek ahead at words it’s trying to predict
But an encoder is given all the words at the start

So a word in one layer can look at a// words in previous layers

Now we get highly contextual top-level encodings of all input words
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X1 X7 X3 X4 X5 X6 X7
Every nation wants Joe to love il
600.465 - Intro to NLP - J.

. 72
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https://jalammar.github.io/illustrated-transformer/

For some missing details: Check out

Transformer seqg2seq

Encoder-decoder cross-attention:
« Each decoder token looks at all encoder tokens

 All layers of decoder look at top layer of encoder
« Diagram shows dec time 2 looking at enc time 4
« Use distinct heads for self- and cross-att
« Or alternate self-att and cross-att layers

X1 X2 X3 X4 X5 Xe X7
Every nation wants Joe to love il

“The Illustrated Transformer™ by Jay Alammar

nation _veut
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Chaque nation veut que...

decoder self-attention

encoder self-attention
(shown only at time 4)


https://jalammar.github.io/illustrated-transformer/

Positional embeddings

e Attention doesn’t see the order of the words.

* One standard solution:
* Replace input X, with X,+p,
* Vector p, encodes “position 4”
* Vector x, encodes the word at that position

* Attention sees both: e.g., the g - /-, logit (attention on input 4)
will be a sum of logits from x, and p,

* There’s a standard sinusoidal scheme for constructing the vectors
p; so we don’t have to learn them — they’re fixed



