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Announcements
• Reading 05
• CTA/TADA/CSS papers using Word Embeddings
• Look at piazza for deadline – Wednesday after spring 

break
• No programming portion

• Reading 06
• Will be back to Mondays

• Office hours this week:
• Normal Thursday slot



Outline

Recap - RNNs

LSTM

Sentence Representations/Probing

Attention

Transformer



Machine Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters
• Update weights by using them to make predictions and 

seeing how far off our predictions are 
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them



RNN - motivation

How can we model a long (possibly infinite) context 
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that 
learn sequential data via recursive dynamics



RNN internal



How else can we expand this?



Bi-directional



Stack more layers



Pytorch - nn.RNN



Recap: RNN’s: Pros and Cons

Pros:
• Model size doesn’t 

increase for longer 
inputs. 
• Reusing same 

parameters

• Computation can use 
information from many 
previous steps

Cons:
• Slow computation

• Can forget longer 
history/context 

• Vanishing/exploding 
gradients



RNNs – long input

RNNs can remember anything (in theory)

Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)
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RNN internal



LSTM internal



LSTM internal



LSTM’s rely on gates

• Multiply input by value in 0,1]
• Zero means forget everything
• 1 means carry everything 

through (unchanged)

• 4 gates used in LSTM



LSTM gates: cell state 

• Passes the memory through the cell



LSTM gates: forget

• Can decide to forget the previous state ℎ!"#



LSTM gates: update

• Compute new contribution to cell state based on 
hidden state and input. 



LSTM gates: update (interpolate) 

• Can decide to forget the previous state ℎ!"#



LSTM output (hidden)



LSTM internal



Pytorch - nn.LSTM



Extracting representation from 
RNN layer



How might we combine the output layers

Extracting representation from 
RNN layer



Extracting representation from 
RNN layer
Transducer
• Create an output for each input



Extracting representation from 
RNN layer
Acceptor/encoder
• Take the output of the last cell



RNNs applied to NLP tasks



Encoder-Decoder model
Called seq2seq model when encoder sequence and decode a sequence



Encoder-Decoder model

We can view 𝑦5 as the vector representation of our 
input/sentence 
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Conneaue et al 2018

Trained NN’s to:
• Translate text
• Predict the next sentence
• Determine if one sentence can be inferred from 

another (Natural Language Inference)
• Random encoder as baseline



Conneaue et al 2018

Used representations from these encoder to predict
• Surface form information:
• The length of the sentence

• Syntactic information:
• If two words in a sentence have been swapped

• “What you are doing out there?” (Bshift)

• Semantic information:
• Tense
• Semantic Odd Man Out

• Replaced random verb or noun in a sentence



Conneaue et al 2018





1. Train a neural 
model



2. Extract sentence representations 
from trained neural encoder



3. Train and 
test 
classifier on 
probing 
dataset



3. Train and 
test 
classifier on 
probing 
dataset

2. Extract sentence representations 
from trained neural encoder

1. Train a neural 
model



https://direct.mit.edu/coli/article-abstract/48/1/207/107571

https://direct.mit.edu/coli/article-abstract/48/1/207/107571


Encoder-decoder

Decoder only uses information from last hidden cell! 
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Bottleneck

Last hidden cell is a bottleneck



Solution: Attention!

• solution to the bottleneck problem

• Core idea: on each step of the decoder, use direct 
connection to the encoder to focus on a particular 
part of the source sequence

Chris Manning



Have we been cramming?
• RNNs etc. – decide early what to keep
• Encode context into ℝ!
• Hope it supports later decoding needs

• E.g., any reading comprehension question

• Attention – keep it all, decide later what to look at
• At each decoding step, get to look back at all of the 

n encoded context objects, each in ℝ!
• Take a weighted average of them, where the weights depend 

on a query created at decoding time
• This average “completes the encoding” into ℝ$

600.465 - Intro to NLP - J. 
Eisner
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let 𝜶 = softmax( ? )

Attention
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…

𝛼"𝒗" + …+ 𝛼#𝒗#
𝛼! 𝛼" 𝛼#

�⃗�

let 𝜶 = softmax(�⃗� ⋅ 𝑘", …, �⃗� ⋅ 𝑘#)

𝑘! 𝑘" 𝑘#

…

Decides what to 
look at!  If 𝜶 =

(0.01,0.97,0.01,…)
then we’re mostly 

attending to �⃗�$ and 
just copying its 

value �⃗�$.

SGD may adjust 𝜶
to look more at �⃗�%

if moving the 
output toward �⃗�%
would help loss.   

values �⃗�$
keys 𝑘$

query �⃗�



Uses of Attention
• Which input word to translate next?
• Which input word to copy next?
• Which database record to look at?
• Which part of the image to look at?
• Which document from the corpus to look at?
• (fast data structures for Maximum Inner Product Search)

• Can encode an unordered bag of objects, of any size, in a 
way that’s determined by a query
• Use this contextual encoding within a larger model

600.465 - Intro to NLP - J. 
Eisner
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Multiple
“heads”
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𝑘! �⃗�! 𝑘" �⃗�" 𝑘# �⃗�#

…

�⃗�

… Many parameters: 
Each “attention head”

uses its own linear 
projection matrices to 

extract keys and values

and to construct the 
queries from the 

current prediction task

Look for several objects �⃗�$ that 
are relevant in different ways
and extract their relevant info

𝜶𝜶𝜶
𝜶

Concatenate the 
result vectors, then 

multiply by one more 
matrix to reduce 
dimensionality

Now pass through an 
MLP to get our query-
specific encoding of 
the context {𝑥!, … , �⃗�#}



Uses of Attention
• Which input word to translate next?
• Which input word to copy next?
• Which constituent / named entity to look at?
• Which database record to look at?
• Which part of the image to look at next?
• Which document from the corpus to look at?

• Can encode an unordered bag of objects, of any size, in a 
way that’s determined by a query
• Use this contextual encoding within a larger model
• Transformer architecture: “Attention is all you need”

600.465 - Intro to NLP - J. 
Eisner
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RNN LM
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RNN LM
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RNN LM
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Transformer LM (e.g., GPT-3)
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Joe is repeatedly transformed to consider more and more context.  
Joe’s current representation tells the heads how to query all the words in the 

current layer.  Each head’s query returns an averaged value.  Those answers are 
concatenated and go thru MLP to get Joe’s transformed representation.  Repeat!

Queries �⃗�
(determin
e coeffs
a)

Queries �⃗�

Queries �⃗�

Attention looks 
at these 

representations 
of the previous 
words, which 
were obtained 
in same way
while making 

previous 
predictions.  

Their keys/vals
are unchanged.

For some other missing details: Check out 
“The Illustrated Transformer”  by Jay Alammar

(Actually, the 
transformed 
representation is the 
old representation 
plus the MLP output.  
Like a residual RNN.)

https://jalammar.github.io/illustrated-transformer/


Training can be parallelized
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At training time, the whole sentence is known.
Layer-L representations can be computed in parallel, with each word 
attending to the layer-(L-1) representations of itself and previous words 

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

Joe towantsnation (oops, to predict the very first 
word, we needed �⃗�$ =< s >!

It’s missing from our diagrams.)



RNN    vs.   Transformer
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Computations: J O(n) L O(n2)
# serial steps: L O(n) due to  J O(1): all        in parallel

+ O(log n) to sum n inputs

Training, 
on GPU,
per layer



Transformer encoder
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• A decoder (LM) mustn’t peek ahead at words it’s trying to predict
• But an encoder is given all the words at the start
• So a word in one layer can look at all words in previous layers
• Now we get highly contextual top-level encodings of all input words
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For some missing details: Check out 
“The Illustrated Transformer”  by Jay Alammar

https://jalammar.github.io/illustrated-transformer/


Transformer seq2seq
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encoder self-attention
(shown only at time 4)

�⃗�! �⃗�" �⃗�% �⃗�&
Chaque nation  veut que …

ℎ! ℎ" ℎ% ℎ&

ℎ!" ℎ"" ℎ%" ℎ&"

ℎ!% ℎ"% ℎ%% ℎ&%

que Joeveutnation

decoder self-attention

For some missing details: Check out 
“The Illustrated Transformer”  by Jay Alammar

Encoder-decoder cross-attention: 
• Each decoder token looks at all encoder tokens
• All layers of decoder look at top layer of encoder
• Diagram shows dec time 2 looking at enc time 4
• Use distinct heads for self- and cross-att
• Or alternate self-att and cross-att layers

https://jalammar.github.io/illustrated-transformer/


Positional embeddings
• Attention doesn’t see the order of the words.
• One standard solution:
• Replace input �⃗�% with �⃗�%+�⃗�%
• Vector �⃗�% encodes “position 4”
• Vector �⃗�% encodes the word at that position
• Attention sees both: e.g., the �⃗� ⋅ 𝑘% logit (attention on input 4) 

will be a sum of logits from �⃗�% and �⃗�%
• There’s a standard sinusoidal scheme for constructing the vectors 
�⃗�$ so we don’t have to learn them – they’re fixed

600.465 - Intro to NLP - J. 
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