4; %H"Z CS 383 — Computational
WL ext Analysis

Adam Poliak
03/01/2023

Slides adapted from Jordan Boyd-Graber,
Daniel Khashabi

Announcements
 HWO04

* Due Friday (shorter than the previous ones)

Reading 05

* CTA/TADA/CSS papers using Word Embeddings
* Look at piazza for deadline — Wednesday after spring break

Reading 06
* Will be back to Mondays

Office hours this week:
 Email me to schedule this week

Final Project Ideation

250 write up — what idea do you have, who are you working with
Due before Spring break

Outline

Recap - Deep Averaging Neural Network

RNNs

Machine Learning in a nutshell

In a ML model, what are we training?
* Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters

* Update weights by using them to make predictions and
seeing how far off our predictions are

* Loss function!

Algorithm to learn weights?
* SGD
* Others exist but not covering them

Classity a tweet as viral or not

Francois Chollet &
@fchollet

When companies that train deep learning models talk about AGI, it's as if
a 3D printing company talked about how the next generation of the

technology was going to bring universal abundance by enabling arbitrary
matter replication -- if we can avoid the grey goo scenario

1:26 PM - Feb 26, 2023 - 149.6K Views

93 Retweets 16 Quote Tweets 574 Likes

Classity a tweet as viral or not

Taylor Swift €& @taylorswift13 - Jan 27

The Lavender Haze video is out now. There is lots of lavender. There is lots
of haze. There is my incredible costar @laith_ashley who | absolutely
adored working with.

Q 7985 1 104.6K Q 4351K i 18.2M o

Output layer

Classify a
tweet as viral
or not

Hidden layer

Hidden layer

Input layer

Taylor Swift & @taylorswift13 - Jan 27

The Lavender Haze video is out now. There is lots of lavender. There is lots

of haze. There is my incredible costar @laith_ashley who | absolutely
adored working with.

Output layer

Classify a
tweet as viral B i L
or not

Hidden layer

Input layer

‘ Rihanna € @rihanna - Feb 15
' ~~ my son so fine! Idc idc idc!
How crazy both of my babies were in these photos and mommy had no

clue @@

thank you so much @edward_enninful and @inezandvinoodh for
celebrating us as a family!

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

Deep Averaging Network

Represent each document as a continuous bag of
words, averaging the word embeddings

X = Wy, Wy, ... Wy,
Zo = CBOW (W, Wy, ...w,,). CBOW = z E[w;]
i

y = MLP(z,)

Multilayer Perceptron

Feed-forward NN

MLPl —_ g(le + bl)WZ + bz

MLP, = g(g(xW; + by)W, + by) W3 + bs

Output layer

Hidden layer

Hidden layer

Input layer

Deep Averaging Network

Represent each document as a continous bag of
words, i.e. averaging the word embeddings

X = Wy, Wy, ... Wy,
Zo = CBOW (W, Wy, ...w,,). CBOW = z E[w;]
i

y = MLP(z,)

Homework after spring break

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics

Recurrent Neural Network (RNN)

he = f(he—1,x¢)

input x; and its previous hidden

state h;_, and outputs a revised
state h;. l I

A loop allows information to
be passed from one step of the
network to the next.

In the diagram, f(...) looks at some @
A

Unrolling an RNN

®) @
] L1
A A - A

6 © 0 © o

A recurrent neural network can be thought of as
multiple copies of the same network, each passing a
message to a successor.

RNN internal

ht - tanh(a?tWh -+ bzh + ht 1Whh —+ bhh)

® ® >
4 N N R
—» s —> —>
A Ly A
\, J N\ Y

Updating weights in a RNN

h: = tanh(z, W, + bip, + he_1 W35 + bry)

dtan(x)
0x

=1 — tan(x)*

So what variables do we need to update?

Our weights and biases

Updating weights in a RNN
h: = tanh(z; W, + by, + hs_1 Wi, + bpp)

dtan(x)
dL dx

20 - JL

=1 — tan(x)*

Updating weights in a RNN

ht — ta.nh(a:tWh -+ bzh + ht IWhh —+ bhh)

\
a1 Lets let this be g

00 " 0L -1 —tan(g) x¢]

oW;p

oL 1 —tan(g)

dbip | _

oL 1 —tan(g) hy_4 dtan(x)

oW, ™

oL 1 —tan(g) x —1 _ 2
35, _ t _ =1 —tan(x)

RNN cell

S;i = R(x;,5;-1,0) };i

9i = 0(s) Pt BNy

Si-1 —> R, O —> s

)

A

Unrolling RNN

X1 29) X3 X4 X5

so0—> R,0 L R, O 2» R, O ﬁ» R, O ﬁ» R, O }—»SS

A ' ' A ' " A ' \ A ' " A

X1 X2 X3 X4 X5

0

Pass in one word at a time

Compute probability over entire vocab by applying

predictive head to last output

RNN: Forward

Error CEGyL9"Y

Hidden layer Q0000

w1
Input layer @

X
She

Y1

Output layer l 0000 l
v 1
1

CE(y,y) = — z Y log Yy

wev

RNN: Forward ~ CEG.9)=-) wlogw

wev

Error CEGyLIY) CE(y?,9%)
yl 5;2
Output layer l 0000 I Q000
v 1

T

S

vV
Hidden layer 000 »

O
Q
O
O
®)
O

w
Input layer @

She went

:

RNN: Forward ~ CEG.9)=-) wlogw

wWEV
Error CE(yLy") CE(y2,92) CE(y%.9%)
V1 9.
Output layer IOOOOI 0000

V
Hidden layer Q0000 »

Input layer @ @ m

RNN: Forward ~ CEG.9)=-) wlogw

wevV
Error CE(yLp"D) CE(y%,9%) CE(y3,9%) CE(y*,9%)
V1 V2 V3 Va
Output layer Q000 0000 OOOO 0000

UT . UT v UT . UT

Hidden layer Q0000) =P (COOO0) = (CO000) =P (©0000)

WT WT WT WT

Input layer Q000 Q000 (0000) Q000
X1 X5 X3 X4

She went to class

RNN: Forward

wev

CE(y,y) = — z Y log Yy

Loss is just averaging Cross-Entropy all predictions

Error

Output layer 5}

Hidden layer

Input layer

CE(yL9"Y)

went?

0000

CE(y?%,9%)

over?

Al

(©0000)

0000

w1

Al

C0000

CE(y3,9°)

class?
Q000

CE(y*,3%)

RNN: Backwards — CEG.9) =~) »logs

wev

Compute the loss at the end, then propagate
derivative of loss back to update the parameters

Error CE(yLy"D) CE(y?,9%) CE(y3,9°) CE(y*,9%)
went? over? class? after?
Output layer Q000 0000 IOOOOI Q0000

UT v UT . UT UT

4
Hiddenlayer (QOOOO] == (OOOOQ) = (CO000) =) (CCO00)

vt wt wt wt

She went to class

N . backpropagated
Training RNNs feedback

books

—_ h
I
1
A

“Backprop over time”

E

U

h© R h(®2) h®) h4) !

0 0 0 o |

1. Compute L for a batch |e Wi st << -0 -Wijo Wi 01—

o M) i @ I

of sentences 0 o ||| !|e o)

2. Compute gradients of e OWe*' OWe“ OWe“
L in respect to parameters o8| ?|9| (9| el
O O) O
3. Repeat P’ T e Te
the cat sat on

) (2 nelB) ey

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

“SO rryIl

Output layer Q000

Al

Hidden layer Q0000

T

w

Input layer

<START>

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

“Sorry” Harry
Output layer 0000 0000

ot vt
Hiddenlayer (OO0 OO] == (GOOOJ)
w w

Input layer @ @

x1 xZ
<START> “Sorry”

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

"Sorry” Harry shouted,
Output layer IOOOOI [OOOO] Q000

Al

|4 U T V
Hidden layer » Q0000 -* 00000

-
—p

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

"Sorry” Harry shouted, panicking
Output layer 0000 0000 OOOO Q0000

E Y S S

Hiddenlayer (QOOO0) == (COO00) = (O0000) =P (COO00

WT WT WT WT

Input layer |.‘.. | l‘... l I..“ I |.".
X1 X2 X3 X4

<START> “Sorry” Harry shouted,

RNN’s: Pros and Cons

Pros:

* Model size doesn’t
increase for longer
inputs.

* Reusing same
parameters

 Computation can use
information from many
previous steps

Cons:
e Slow computation

* Can forget longer
history/context

* Vanishing/exploding
gradients

Vanishing/exploding gradient
Backpropagated loss multiplied at each layer

If |loss|> 1,

exponential growth -> oo

If loss >0 and <1

exponential decay -> 0

Solution — Gradient Clipping

If the gradient is greater than some threshold, scale
it before updating weights

Pascanu et al. 2013
http://proceedings.mir.press/
Intuition: v28/pascanul3.pdf

Take a step in the same direction, but smaller

Algorithm 1 Pseudo-code for norm clipping
g < 39
if ||g|| > threshold then

~ , threshold A
& el B

end if

RNNs applied to other tasks

many to one many to many many to many

Text Classification Language Modeling POSTags

Extracting representation from
RNN layer

Acceptor
* Take the output of the last cell <,l°ss

-

< predict an .
calculate lcy

P

S
4. RO

0 [50 || RO % no [
I

so0—> RO

Extracting representation from
RNN layer

Transducer

loss
* Create an output for each mput - (
B >
@edlct and @edlct ah ﬁedlct aﬁ éedlct arh 6ed1ct and
\c\alilitc—elloss calculate lo y Qulate loy &lculate loy \&lculate loss

TYI TYZ TY.’S Tﬂ TYS

soﬂ‘ Ro L rRo %2, ro %8 RO % RO ‘

> T
T o) L T . L A J [T 4 _7A

X1 X2 X3 X4 X5

How else can we expand this?

s)0—> R, O % RO % RO ’§> R,0 ﬁ»\ R O ’—»ss
L 3 L i 3 L A 3 L 3

T)) A A

X1 X2 X3 X4 X5

Bi-directional

Ybrown

A

-

Yfox

i

concat concat
\ 4
Ys 3

$2

<s4_# Rb.0b ‘é{ Rb,0b

) A A
£
- n v
. g
1~ RAOf %—»2 ‘ R/,0f %—>
Xbrow; xfox_

Stack more layers

Y1 Y2 Y3 Y4 Ys
4 | ﬁ ¢ «
3 3 3
Y1 Y2 y3 Y4 Y5

Pytorch - nn.RNN

Parameters:

e input_size - The number of expected features in the input x

¢ hidden_size - The number of features in the hidden state h

e num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and
computing the final results. Default: 1

¢ nonlinearity - The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'

e bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

e batch_first - If True, then the input and output tensors are provided as (batch, seq, feature) instead
of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs
sections below for details. Default: False

e dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last
layer, with dropout probability equal to dropout. Default: 0

¢ bidirectional - If True, becomes a bidirectional RNN. Default: False

RNNs —long input

RNNs can remember anything (in theory)
Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)

RNN internal

LSTM internal

i i i

4 N\ N\)
> —@——® > —»>

Eanh>
A 1ot A
i i |

—> > -

o J G _J

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

LSTM internal

Sj = RLSTM(Sj—l9xj) =[CJ’hJ]

) () ¢j=f0O¢cj1+i0z

4 hj =o © tanh(c;)
’f@/ - A . i =o(x;W* + hj Wh')
L ? f =0c(xjW* + hj_ W)
T r‘:’::i’h j > 0 =G W A Ry W)
y, J

z =tanh(x;W** + hj_4 th)

yj = OLSTM(Sj) =hj

LSTM’s rely on gates

—®—
!
|

* Multiply input by value in 0,1]
e Zero means forget everything

* 1 means carry everything
through (unchanged)

* 4 gates used in LSTM

LSTM gates: cell state

* Passes the memory through the cell

LSTM gates: forget

* Can decide to forget the previous state h;_,

ft =0 (Wys-|hi—1,2:] + by)

LSTM gates: update

 Compute new contribution to cell state based on
hidden state and input.

it =0 (Wi-lhe—1,2¢] + b;)
i ét — tanh(WC'[ht_l,ZC‘t] -+ bc)

LSTM gates: update (interpolate)

* Can decide to forget the previous state h;_,

vo

)

& ®-
ﬁT Ltr%% Cy = fix Cyi1 +1iy % Cy

LSTM output (hidden)

Ot — J(Wo [ht—lamt] =+ bo)
ht = Ot * tanh (Ct)

LSTM internal

D,

A

/‘\

\

—P@ >
abel
—> >

J

©

Zt — U(szmt o bzz I thht 1 7 bhz)
ft = o(Wiszy + bjg + Whphi_1 + bry)

g: = tanh(W;,a; + by + Whighi—1 + bpg)
Of = O'(VViowt + bz’o + Whoht—l + bho)

¢t = [t ©c1+ 1 O gy

ht =0t ® tanh(ct)

Pytorch - nn.LSTM

Parameters:

input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM
and computing the final results. Default: 1

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first - If True, then the input and output tensors are provided as (batch, seq, feature) instead
of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs
sections below for details. Default: False

dropout - If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last
layer, with dropout probability equal to dropout. Default: 0

bidirectional - If True, becomes a bidirectional LSTM. Default: False

proj_size - If > 0, will use LSTM with projections of corresponding size. Default: 0

