
CS 383 – Computational
Text Analysis

Lecture 13
Recurrent Neural Networks

Adam Poliak
03/01/2023

Slides adapted from Jordan Boyd-Graber,
Daniel Khashabi

Announcements
• HW04

• Due Friday (shorter than the previous ones)

• Reading 05
• CTA/TADA/CSS papers using Word Embeddings
• Look at piazza for deadline – Wednesday after spring break

• Reading 06
• Will be back to Mondays

• Office hours this week:
• Email me to schedule this week

• Final Project Ideation
250 write up – what idea do you have, who are you working with
Due before Spring break

Outline

Recap - Deep Averaging Neural Network

RNNs

Machine Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we train parameters in supervised learning?
train parameters == figure out values for the parameters
• Update weights by using them to make predictions and

seeing how far off our predictions are
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them

Classify a tweet as viral or not

Classify a tweet as viral or not

Classify a
tweet as viral
or not

Classify a
tweet as viral
or not

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

Deep Averaging Network

Represent each document as a continuous bag of
words, averaging the word embeddings

𝑥 = 𝑤!, 𝑤", …𝑤#
𝑧$ = 𝐶𝐵𝑂𝑊(𝑤!, 𝑤", …𝑤#). 𝐶𝐵𝑂𝑊 =.

%

𝐸 𝑤%

0𝑦 = 𝑀𝐿𝑃(𝑧&)

Multilayer Perceptron

Feed-forward NN

𝑀𝐿𝑃! = 𝑔 𝑥𝑊! + 𝑏! 𝑊" + 𝑏"

𝑀𝐿𝑃" = 𝑔(𝑔 𝑥𝑊! + 𝑏! 𝑊" + 𝑏") 𝑊' + 𝑏'

𝑀𝐿𝑃!

Deep Averaging Network

Represent each document as a continous bag of
words, i.e. averaging the word embeddings

𝑥 = 𝑤!, 𝑤", …𝑤#
𝑧$ = 𝐶𝐵𝑂𝑊(𝑤!, 𝑤", …𝑤#). 𝐶𝐵𝑂𝑊 =.

%

𝐸 𝑤%

0𝑦 = 𝑀𝐿𝑃(𝑧&)

Homework after spring break

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics

Recurrent Neural Network (RNN)

ℎ(= 𝑓 ℎ()!, 𝑥(

In the diagram, 𝑓(…) looks at some
input 𝑥(and its previous hidden
state ℎ()! and outputs a revised
state ℎ(.
A loop allows information to
be passed from one step of the
network to the next.

Unrolling an RNN

A recurrent neural network can be thought of as
multiple copies of the same network, each passing a
message to a successor.

RNN internal

Updating weights in a RNN

𝜕tan(𝑥)
𝜕𝑥

= 1 − tan(𝑥)"

So what variables do we need to update?
Our weights and biases

Updating weights in a RNN

𝜕𝐿
𝜕𝜃

=
𝜕𝐿
𝜕𝑊!"
𝜕𝐿
𝜕𝑏!"
𝜕𝐿
𝜕𝑊!"
𝜕𝐿
𝜕𝑏!"

𝜕tan(𝑥)
𝜕𝑥

= 1 − tan(𝑥)#

Updating weights in a RNN

𝜕𝐿
𝜕𝜃

=
𝜕𝐿
𝜕𝑊!"
𝜕𝐿
𝜕𝑏!"
𝜕𝐿
𝜕𝑊!"
𝜕𝐿
𝜕𝑏!"

𝜕tan(𝑥)
𝜕𝑥

= 1 − tan(𝑥)#

Lets let this be g

1 − tan 𝑔 𝑥$

1 − tan 𝑔

1 − tan 𝑔 ℎ$%&

1 − tan 𝑔 𝑥$

=

RNN cell

𝑠% = 𝑅(𝑥% , 𝑠%)!, 𝜃)

C𝑦% = 𝑂(𝑠%)

Unrolling RNN

Revisiting LM

Pass in one word at a time
Compute probability over entire vocab by applying
predictive head to last output

𝑃 𝑥$ 𝑥$%&, 𝑥$%#, … 𝑥&)

RNN: Forward 𝐶𝐸 𝑦, 7𝑦 = − 8
'∈)

𝑦' log <𝑦'

RNN: Forward 𝐶𝐸 𝑦, 7𝑦 = − 8
'∈)

𝑦' log <𝑦'

RNN: Forward 𝐶𝐸 𝑦, 7𝑦 = − 8
'∈)

𝑦' log <𝑦'

RNN: Forward 𝐶𝐸 𝑦, 7𝑦 = − 8
'∈)

𝑦' log <𝑦'

RNN: Forward

Loss is just averaging Cross-Entropy all predictions

𝐶𝐸 𝑦, 7𝑦 = − 8
'∈)

𝑦' log <𝑦'

RNN: Backwards

Compute the loss at the end, then propagate
derivative of loss back to update the parameters

𝐶𝐸 𝑦, 7𝑦 = − 8
'∈)

𝑦' log <𝑦'

Training RNNs

“Backprop over time”

1. Compute ℒ for a batch
of sentences
2. Compute gradients of
ℒ in respect to parameters
3. Repeat

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

RNN’s: Pros and Cons

Pros:
• Model size doesn’t

increase for longer
inputs.
• Reusing same

parameters

• Computation can use
information from many
previous steps

Cons:
• Slow computation

• Can forget longer
history/context

• Vanishing/exploding
gradients

Vanishing/exploding gradient

Backpropagated loss multiplied at each layer

If |loss|> 1,
exponential growth -> ∞

If loss > 0 and <1
exponential decay -> 0

Solution – Gradient Clipping

If the gradient is greater than some threshold, scale
it before updating weights

Intuition:
Take a step in the same direction, but smaller

Pascanu et al. 2013
http://proceedings.mlr.press/
v28/pascanu13.pdf

RNNs applied to other tasks

Extracting representation from
RNN layer
Acceptor
• Take the output of the last cell

Extracting representation from
RNN layer
Transducer
• Create an output for each input

How else can we expand this?

Bi-directional

Stack more layers

Pytorch - nn.RNN

RNNs – long input

RNNs can remember anything (in theory)

Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)

RNN internal

LSTM internal

LSTM internal

LSTM’s rely on gates

• Multiply input by value in 0,1]
• Zero means forget everything
• 1 means carry everything

through (unchanged)

• 4 gates used in LSTM

LSTM gates: cell state

• Passes the memory through the cell

LSTM gates: forget

• Can decide to forget the previous state ℎ()!

LSTM gates: update

• Compute new contribution to cell state based on
hidden state and input.

LSTM gates: update (interpolate)

• Can decide to forget the previous state ℎ()!

LSTM output (hidden)

LSTM internal

Pytorch - nn.LSTM

