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Announcements
• HW04

• Due Friday (shorter than the previous ones)

• Reading 05
• CTA/TADA/CSS papers using Word Embeddings
• Look at piazza for deadline

• Office hours this week:
• After class today
• Email me to schedule this week

• Final Project Ideation
250 write up – what idea do you have, who are you working 
with 
Due before Spring break
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Supervised Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we learn values for parameters?
• Update them by using them to make predictions and 

seeing how far off our predictions are
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them
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Find coefficient and bias to 
minimize loss
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Symbolic differentiation
Con’s: lots of repeated computations



Computation graph

A way to represent an expression broken down into 
separate operations. 

Each operation is a node in a graph

At each node, store value from forward pass, and 
values of the loss from backward pass



Backpropagation

Computing derivative of the output with respect to 
intermediate variables (including the input)

1. Create computation graph
2. Write down the multi-variable derivative of each

node in the graph
3. Compute forward pass
4. Starting at the last night, propagate the loss 

backwards



One node view
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Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The 

algorithm defines a directed acyclic graph, where each variable is a 
node (i.e. the “computation graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables Slide from Matt Gormley



backward pass
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Exploding gradient

The gradient can accumulate, becoming very big

Issues: 
might move our weights too much
result in Nan

Solution:
Clipping

Maximum value for gradients
Can be dynamic
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Vanishing gradient

The gradient become 0

Issues: 
wont be able to update weights (because 0 gets 

passed all the way back)
stuck in a local optima

Solution:
ReLU activation function

z = max(0, z)



ReLU
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7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)
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Dead neuron

In forward pass, output of a node w/ ReLU activation 
often will be 0

Issues: 
wont pass information from one node to the next
lots of  useless nodes

Solution:
Leaky ReLU activation function
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Pytorch

Torch: Facebook’s deep learning framework

Originally written in Lua (C backend) 

Optimized to run computations on GPU 

Mature, industry-supported framework



Defining a model



nn.Module

Base class for all neural network modules.
Creates a computation graph

Define the model in __init__
Specify how to make predictions in forward

If only use built-in modules, no need to 
implement backprop



Defining a model



Train a model

Define:
• Loss function
• Learning algorithm (e.g. SGD)
• Learning rate
• Number of epochs



Train a model

In each iteration:
• Make a prediction
• Compute the loss
• Autograd (Automatic differentiation), backprop
• Update the weights

https://pytorch.org/docs/stable/autograd.html


Train a model



Classify a tweet as viral or not



Classify a tweet as viral or not



Classify a 
tweet as viral 
or not



Classify a 
tweet as viral 
or not



FFN’s issues

Input size is fixed, but the length of text (or a 
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks
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Deep Averaging Network

Represent each document as a continuous bag of 
words, averaging the word embeddings

𝑥 = 𝑤&, 𝑤', …𝑤(
𝑧) = 𝐶𝐵𝑂𝑊(𝑤&, 𝑤', …𝑤(). 𝐶𝐵𝑂𝑊 =.

*

𝐸 𝑤*

0𝑦 = 𝑀𝐿𝑃(𝑧+)



Multilayer Perceptron

Feed-forward NN

𝑀𝐿𝑃& = 𝑔 𝑥𝑊& + 𝑏& 𝑊' + 𝑏'

𝑀𝐿𝑃' = 𝑔(𝑔 𝑥𝑊& + 𝑏& 𝑊' + 𝑏') 𝑊, + 𝑏,
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𝑀𝐿𝑃!



Deep Averaging Network

Represent each document as a continous bag of 
words, i.e. averaging the word embeddings

𝑥 = 𝑤&, 𝑤', …𝑤(
𝑧) = 𝐶𝐵𝑂𝑊(𝑤&, 𝑤', …𝑤(). 𝐶𝐵𝑂𝑊 =.

*

𝐸 𝑤*

0𝑦 = 𝑀𝐿𝑃(𝑧+)

Homework after spring break



FFN’s issues

Input size is fixed, but the length of text (or a 
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks
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RNN - motivation

How can we model a long (possibly infinite) context 
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that 
learn sequential data via recursive dynamics



Recurrent Neural Network (RNN)

ℎ/ = 𝑓 ℎ/0&, 𝑥/

In the diagram, 𝑓(… ) looks at some 
input 𝑥/ and its previous hidden 
state ℎ/0& and outputs a revised 
state ℎ/. 
A loop allows information to 
be passed from one step of the
network to the next.



Unrolling an RNN

A recurrent neural network can be thought of as 
multiple copies of the same network, each passing a 
message to a successor.



RNN cell

𝑠* = 𝑅(𝑥* , 𝑠*0&, 𝜃)

>𝑦* = 𝑂(𝑠*)



Unrolling RNN



Revisiting LM

Pass in one word at a time
Compute probability over entire vocab by applying 
predictive head to last output

𝑃 𝑥7 𝑥785, 𝑥786, … 𝑥5)



RNN: Forward 𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9
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RNN: Forward 𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9



RNN: Forward

Loss is just averaging Cross-Entropy all predictions

𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9



RNN: Backwards

Compute the loss at the end, then propagate 
derivative of loss back to update the parameters

𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9



Training RNNs

“Backprop over time”

1. Compute ℒ for a batch 
of sentences
2. Compute gradients of
ℒ in respect to parameters
3. Repeat



Generating with RNNs
Until we see a </s>, generate the most likely next 
word by sampling from previously predicted word
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Generating with RNNs
Until we see a </s>, generate the most likely next 
word by sampling from previously predicted word



Generating with RNNs
Until we see a </s>, generate the most likely next 
word by sampling from previously predicted word



RNNs applied to other tasks



RNN’s: Pros and Cons

Pros:
• Model size doesn’t 

increase for longer
inputs. 
• Reusing same 

parameters

• Computation can use 
information from many 
previous steps

Cons:
• Slow computation

• Can forget longer 
history/context

• Vanishing/exploding
gradients



Vanishing/exploding gradient

Backpropagated loss multiplied at each layer

If |loss|> 1, 
exponential growth -> ∞

If loss > 0 and <1
exponential decay -> 0



Solution – Gradient Clipping

If the gradient is greater than some threshold, scale 
it before updating weights

Intuition:
Take a step in the same direction, but smaller 

Pascanu et al. 2013 
http://proceedings.mlr.press/
v28/pascanu13.pdf



LSTM (Long-Short Term Memory)

RNNs don’t work with very long inputs



RNNs – long input

RNNs can remember anything (in theory)

Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)



RNN internal



LSTM internal


