
CS 383 – Computational
Text Analysis

Lecture 12
FNNs roundup, RNNs

Adam Poliak
02/27/2023

Slides adapted from Jordan Boyd-Graber,
Daniel Khashabi, Matt Gormley, Eren
Gultepe

Announcements
• HW04

• Due Friday (shorter than the previous ones)

• Reading 05
• CTA/TADA/CSS papers using Word Embeddings
• Look at piazza for deadline

• Office hours this week:
• After class today
• Email me to schedule this week

• Final Project Ideation
250 write up – what idea do you have, who are you working
with
Due before Spring break

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

Supervised Learning in a nutshell

In a ML model, what are we training?
• Parameters!

How do we learn values for parameters?
• Update them by using them to make predictions and

seeing how far off our predictions are
• Loss function!

Algorithm to learn weights?
• SGD
• Others exist but not covering them

Root sum of squares

1
2
#
!"#

$

(𝑦! − 𝜷 (𝒙!)%

ℒ ,𝑦, 𝑦 =
1
2 (𝑦 − ,𝑦)%

= #
%
(𝑦 − 𝜎(𝛽 ∗ 𝑥 + 𝛽&))%

Lets imagine we have one weight,
= #

%
(𝑦 − 𝜎(𝛽# ∗ 𝑥 + 𝛽&))%

Find coefficient and bias to
minimize loss

ℒ ,𝑦, 𝑦 =
1
2
(𝑦 − 𝜎(𝛽# ∗ 𝑥 + 𝛽&))%

'ℒ
')!

= 𝑦 − 𝜎 𝛽# ∗ 𝑥 + 𝛽& 𝜎* 𝛽# ∗ 𝑥 + 𝛽& 𝑥

'ℒ
')"

= 𝑦 − 𝜎 𝛽# ∗ 𝑥 + 𝛽& 𝜎* 𝛽# ∗ 𝑥 + 𝛽&

Symbolic differentiation
Con’s: lots of repeated computations

Computation graph

A way to represent an expression broken down into
separate operations.

Each operation is a node in a graph

At each node, store value from forward pass, and
values of the loss from backward pass

Backpropagation

Computing derivative of the output with respect to
intermediate variables (including the input)

1. Create computation graph
2. Write down the multi-variable derivative of each

node in the graph
3. Compute forward pass
4. Starting at the last night, propagate the loss

backwards

One node view

f

Lectu
re 4 -

36Figure from Andrej Karpathy

𝜕𝐿
𝜕𝑥 =

𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑥

𝜕𝐿
𝜕𝑦 =

𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑦

Local gradient

𝜕𝐿
𝜕𝑧

Upstream gradient
Downstream gradient

Backpropagation

26

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The

algorithm defines a directed acyclic graph, where each variable is a
node (i.e. the “computation graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables Slide from Matt Gormley

backward pass

a

b

c 𝑑 = 𝑐!

𝑓 = 2𝑏

𝑒 = 𝑎 ∗ 𝑑

𝑔 = 𝑎 + 𝑓 ℎ = 𝑔 + 𝑒

L = ℎ ∗ 𝑏

3

1

-2 4

2

5

12

17

17

𝜕𝐿
𝜕𝑏 = 17

𝜕𝐿
𝜕ℎ

= 1

"#
"$
= "#

"%
"%
"$
= 12

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑔

𝜕𝑔
𝜕𝑎 = 12

𝜕𝐿
𝜕𝑓

=
𝜕𝐿
𝜕𝑔

𝜕𝑔
𝜕𝑓

= 12 𝜕𝐿
𝜕𝑒 = 1

𝜕𝐿
𝜕𝑑 = 3

𝜕𝐿
𝜕𝑐 = −12

#$
#%

= 3

#%
#&

= 2c = -4

Exploding gradient

The gradient can accumulate, becoming very big

Issues:
might move our weights too much
result in Nan

Solution:
Clipping

Maximum value for gradients
Can be dynamic

backward pass

a

b

c 𝑑 = 𝑐!

𝑓 = 2𝑏

𝑒 = 𝑎 ∗ 𝑑

𝑔 = 𝑎 + 𝑓 ℎ = 𝑔 + 𝑒

L = ℎ ∗ 𝑏

3

1

-2 4

2

5

12

17

17

𝜕𝐿
𝜕𝑏 = 17

𝜕𝐿
𝜕ℎ

= 1

"#
"$
= "#

"%
"%
"$
= 12

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑔

𝜕𝑔
𝜕𝑎 = 12

𝜕𝐿
𝜕𝑓

=
𝜕𝐿
𝜕𝑔

𝜕𝑔
𝜕𝑓

= 12 𝜕𝐿
𝜕𝑒 = 1

𝜕𝐿
𝜕𝑑 = 3

𝜕𝐿
𝜕𝑐 = −12

#$
#%

= 3

#%
#&

= 2c = -4

Vanishing gradient

The gradient become 0

Issues:
wont be able to update weights (because 0 gets

passed all the way back)
stuck in a local optima

Solution:
ReLU activation function

z = max(0, z)

ReLU

16

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)

One node view

f

Lectu
re 4 -

36Figure from Andrej Karpathy

Dead neuron

In forward pass, output of a node w/ ReLU activation
often will be 0

Issues:
wont pass information from one node to the next
lots of useless nodes

Solution:
Leaky ReLU activation function

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

Pytorch

Torch: Facebook’s deep learning framework

Originally written in Lua (C backend)

Optimized to run computations on GPU

Mature, industry-supported framework

Defining a model

nn.Module

Base class for all neural network modules.
Creates a computation graph

Define the model in __init__
Specify how to make predictions in forward

If only use built-in modules, no need to
implement backprop

Defining a model

Train a model

Define:
• Loss function
• Learning algorithm (e.g. SGD)
• Learning rate
• Number of epochs

Train a model

In each iteration:
• Make a prediction
• Compute the loss
• Autograd (Automatic differentiation), backprop
• Update the weights

https://pytorch.org/docs/stable/autograd.html

Train a model

Classify a tweet as viral or not

Classify a tweet as viral or not

Classify a
tweet as viral
or not

Classify a
tweet as viral
or not

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

Deep Averaging Network

Represent each document as a continuous bag of
words, averaging the word embeddings

𝑥 = 𝑤&, 𝑤', …𝑤(
𝑧) = 𝐶𝐵𝑂𝑊(𝑤&, 𝑤', …𝑤(). 𝐶𝐵𝑂𝑊 =.

*

𝐸 𝑤*

0𝑦 = 𝑀𝐿𝑃(𝑧+)

Multilayer Perceptron

Feed-forward NN

𝑀𝐿𝑃& = 𝑔 𝑥𝑊& + 𝑏& 𝑊' + 𝑏'

𝑀𝐿𝑃' = 𝑔(𝑔 𝑥𝑊& + 𝑏& 𝑊' + 𝑏') 𝑊, + 𝑏,

𝑀𝐿𝑃!

𝑥&
𝑥'
𝑥,
𝑥-

ℎ','

ℎ',)

ℎ!,#

ℎ$,!

ℎ$,$

ℎ$,#

∑ !𝑦

𝑊&

𝒉4 = 𝜎(𝑥𝑊5)

𝑊'
𝑊,

𝒉5 = 𝜎(𝜎 𝑥𝑊5 𝑊6

𝑀𝐿𝑃!

Deep Averaging Network

Represent each document as a continous bag of
words, i.e. averaging the word embeddings

𝑥 = 𝑤&, 𝑤', …𝑤(
𝑧) = 𝐶𝐵𝑂𝑊(𝑤&, 𝑤', …𝑤(). 𝐶𝐵𝑂𝑊 =.

*

𝐸 𝑤*

0𝑦 = 𝑀𝐿𝑃(𝑧+)

Homework after spring break

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics

Recurrent Neural Network (RNN)

ℎ/ = 𝑓 ℎ/0&, 𝑥/

In the diagram, 𝑓(…) looks at some
input 𝑥/ and its previous hidden
state ℎ/0& and outputs a revised
state ℎ/.
A loop allows information to
be passed from one step of the
network to the next.

Unrolling an RNN

A recurrent neural network can be thought of as
multiple copies of the same network, each passing a
message to a successor.

RNN cell

𝑠* = 𝑅(𝑥* , 𝑠*0&, 𝜃)

>𝑦* = 𝑂(𝑠*)

Unrolling RNN

Revisiting LM

Pass in one word at a time
Compute probability over entire vocab by applying
predictive head to last output

𝑃 𝑥7 𝑥785, 𝑥786, … 𝑥5)

RNN: Forward 𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9

RNN: Forward 𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9

RNN: Forward 𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9

RNN: Forward 𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9

RNN: Forward

Loss is just averaging Cross-Entropy all predictions

𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9

RNN: Backwards

Compute the loss at the end, then propagate
derivative of loss back to update the parameters

𝐶𝐸 𝑦, !𝑦 = − 0
9∈;

𝑦9 log 4𝑦9

Training RNNs

“Backprop over time”

1. Compute ℒ for a batch
of sentences
2. Compute gradients of
ℒ in respect to parameters
3. Repeat

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

Generating with RNNs
Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

RNNs applied to other tasks

RNN’s: Pros and Cons

Pros:
• Model size doesn’t

increase for longer
inputs.
• Reusing same

parameters

• Computation can use
information from many
previous steps

Cons:
• Slow computation

• Can forget longer
history/context

• Vanishing/exploding
gradients

Vanishing/exploding gradient

Backpropagated loss multiplied at each layer

If |loss|> 1,
exponential growth -> ∞

If loss > 0 and <1
exponential decay -> 0

Solution – Gradient Clipping

If the gradient is greater than some threshold, scale
it before updating weights

Intuition:
Take a step in the same direction, but smaller

Pascanu et al. 2013
http://proceedings.mlr.press/
v28/pascanu13.pdf

LSTM (Long-Short Term Memory)

RNNs don’t work with very long inputs

RNNs – long input

RNNs can remember anything (in theory)

Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)

RNN internal

LSTM internal

