

CS 383 – Computational Text Analysis

Lecture 12 FNNs roundup, RNNs

Adam Poliak 02/27/2023

Slides adapted from Jordan Boyd-Graber, Daniel Khashabi, Matt Gormley, Eren Gultepe

Announcements

- HW04
 - Due Friday (shorter than the previous ones)
- Reading 05
 - CTA/TADA/CSS papers using Word Embeddings
 - Look at piazza for deadline
- Office hours this week:
 - After class today
 - Email me to schedule this week
- Final Project Ideation
 - 250 write up what idea do you have, who are you working with
 - Due before Spring break

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

Supervised Learning in a nutshell

In a ML model, what are we training?

• Parameters!

How do we learn values for parameters?

- Update them by using them to make predictions and seeing how far off our predictions are
 - Loss function!

Algorithm to learn weights?

- SGD
- Others exist but not covering them

Root sum of squares

$$\frac{1}{2}\sum_{i=1}^{n}(y_i - \boldsymbol{\beta} \cdot \boldsymbol{x}_i)^2$$

$$\begin{aligned} \mathcal{L}(\hat{y}, y) &= \frac{1}{2} (y - \hat{y})^2 \\ &= \frac{1}{2} (y - \sigma(\beta * x + \beta_0))^2 \end{aligned}$$

Lets imagine we have one weight,

$$= \frac{1}{2}(y - \sigma(\beta_1 * x + \beta_0))^2$$

Find coefficient and bias to minimize loss

$$\mathcal{L}(\hat{y}, y) = \frac{1}{2}(y - \sigma(\beta_1 * x + \beta_0))^2$$

$$\frac{\partial \mathcal{L}}{\partial \beta_1} = (y - \sigma(\beta_1 * x + \beta_0))\sigma'(\beta_1 * x + \beta_0)x$$

$$\frac{\partial \mathcal{L}}{\partial \beta_0} = (y - \sigma(\beta_1 * x + \beta_0))\sigma'(\beta_1 * x + \beta_0)$$

Symbolic differentiation

Con's: lots of repeated computations

Computation graph

A way to represent an expression broken down into separate operations.

Each operation is a node in a graph

At each node, store value from forward pass, and values of the loss from backward pass

Backpropagation

Computing derivative of the output with respect to intermediate variables (including the input)

- 1. Create computation graph
- 2. Write down the multi-variable derivative of each node in the graph
- 3. Compute forward pass
- 4. Starting at the last night, propagate the loss backwards

Figure from Andrej Karpathy

Training

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The 1. algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- 2. Visit each node in topological order. For variable u_i with inputs v_1, \ldots, v_N a. Compute $u_i = g_i(v_1, \ldots, v_N)$ b. Store the result at the node

Backward Computation

- **Initialize** all partial derivatives dy/du_i to 0 and dy/dy = 1. 1.
- Visit each node in reverse topological order. 2.
 - For variable $u_i = g_i(v_1, \dots, v_N)$ a. We already know dy/du_i
 - b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Return partial derivatives dy/du, for all variables

Slide from Matt Gormley

Exploding gradient

The gradient can accumulate, becoming very big

Issues:

might move our weights too much result in Nan

Solution: Clipping Maximum value for gradients Can be dynamic

Vanishing gradient

The gradient become 0

Issues:

wont be able to update weights (because 0 gets passed all the way back) stuck in a local optima

Solution:

ReLU activation function z = max(0, z)

ReLU

One node view

Figure from Andrej Karpathy

Dead neuron

In forward pass, output of a node w/ ReLU activation often will be 0

Issues:

wont pass information from one node to the next lots of useless nodes f(y)

Solution:

Leaky ReLU activation function

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

Pytorch

Torch: Facebook's deep learning framework

Originally written in Lua (C backend)

Optimized to run computations on GPU

Mature, industry-supported framework

Defining a model

```
import torch
from torch import nn
```

```
class LogisticRegression(nn.Module):
    def __init__(self, input_size, num_classes):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    def forward(self, x):
        out = self.linear(x)
```

<mark>return</mark> out

nn.Module

Base class for all neural network modules. Creates a computation graph

Define the model in ____init___

Specify how to make predictions in forward

If only use built-in modules, no need to implement backprop

Defining a model

```
import torch
from torch import nn
class FNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(FNN, self).__init__()
        self.input_size = input_size
        self.l1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.l2 = nn.Linear(hidden_size, num_classes)
    def forward(self, x):
        out = self.l1(x)
        out = self.relu(out)
        out = self.l2(out)
        # no activation and no softmax at the end
        return out
```

Train a model

Define:

- Loss function
- Learning algorithm (e.g. SGD)
- Learning rate
- Number of epochs

```
num_epochs = 100
learning_rate = 0.003
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
loss_fn = nn.CrossEntropyLoss()
```

Train a model

In each iteration:

- Make a prediction
- Compute the loss
- Autograd (Automatic differentiation), backprop
- Update the weights

```
optimizer.zero_grad()
prediction = model(X[i])
loss_val = loss_fn(prediction, labels[0][i])
loss_val.backward()
optimizer.step()
```

Train a model

```
# Training the Model
for epoch in range(num_epochs):
    num_correct = 0
    for i in range(100):
        optimizer.zero_grad()
        prediction = model(X[i])
        loss_val = loss_fn(prediction, labels[0][i])
        loss_val.backward()
        optimizer.step()
```

print(f"loss at epoch {epoch}: {loss_val}")
print(f"accuracy at epoch {epoch}: {num_correct / 100}")

Classify a tweet as viral or not

When companies that train deep learning models talk about AGI, it's as if a 3D printing company talked about how the next generation of the technology was going to bring universal abundance by enabling arbitrary matter replication -- if we can avoid the grey goo scenario

...

1:26 PM · Feb 26, 2023 · 149.6K Views

93 Retweets 16 Quote Tweets 574 Likes

Classify a tweet as viral or not

Taylor Swift
 @taylorswift13 · Jan 27
 The Lavender Haze video is out now. There is lots of lavender. There is lots
of haze. There is my incredible costar @laith_ashley who I absolutely
adored working with.

Taylor Swift 🤣 @taylorswift13 · Jan 27

The Lavender Haze video is out now. There is lots of lavender. There is lots of haze. There is my incredible costar @laith_ashley who I absolutely adored working with.

...

Classify a tweet as viral or not

Input layer

Rihanna 🤣 @rihanna · Feb 15 my son so fine! Idc idc idc!

How crazy both of my babies were in these photos and mommy had no clue 🖤 🖤 thank you so much @edward_enninful and @inezandvinoodh for

celebrating us as a family!

FFN's issues

Input size is fixed, but the length of text (or a document) is variable

Solutions:

- 1. Create a fixed length representation
- 2. Recurrent Neural Networks

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

Deep Averaging Network

Represent each document as a continuous bag of words, averaging the word embeddings

$$x = w_1, w_2, \dots w_n$$

$$z_0 = CBOW(w_1, w_2, \dots w_n). CBOW = \sum_i E[w_i]$$

$$\hat{y} = MLP(z_0)$$

Multilayer Perceptron

Feed-forward NN

$$MLP_1 = g(xW_1 + b_1)W_2 + b_2$$

$$MLP_2 = g(g(xW_1 + b_1)W_2 + b_2)W_3 + b_3$$

Deep Averaging Network

Represent each document as a continous bag of words, i.e. averaging the word embeddings

$$x = w_1, w_2, \dots w_n$$

$$z_0 = CBOW(w_1, w_2, \dots w_n). CBOW = \sum_i E[w_i]$$

$$\hat{y} = MLP(z_0)$$

Homework after spring break
FFN's issues

Input size is fixed, but the length of text (or a document) is variable

Solutions:

- 1. Create a fixed length representation
- 2. Recurrent Neural Networks

Outline

Recap - Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

RNNs

RNN - motivation

How can we model a **long** (possibly infinite) context using a finite **model?**

Recursion

Recurrent Neural Networks are a family of NNs that learn sequential data via **recursive dynamics**

Recurrent Neural Network (RNN)

$$h_t = f(h_{t-1}, x_t)$$

In the diagram, f(...) looks at some input x_t and its previous hidden state h_{t-1} and outputs a revised state h_t .

A loop allows information to be passed from one step of the network to the next.

Unrolling an RNN

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.

RNN cell

Unrolling RNN

Revisiting LM

 $P(x_t | x_{t-1}, x_{t-2}, \dots x_1)$

Pass in one word at a time

Compute probability over entire vocab by applying predictive head to last output

 $CE(y, \hat{y}) = -\sum y_w \log \widehat{y_w}$ $\overline{w \in V}$

 $CE(y, \hat{y}) = -\sum y_w \log \widehat{y_w}$ $\overline{w \in V}$

 $CE(y, \hat{y}) = -\sum_{w} y_{w} \log \widehat{y_{w}}$ $w \in V$

Loss is just averaging Cross-Entropy all predictions

RNN: Backwards $CE(y, \hat{y}) = -\sum_{w \in V} y_w \log \widehat{y_w}$

Compute the loss at the end, then propagate derivative of loss back to update the parameters

RNNs applied to other tasks

Text Classification

Language Modeling

POSTags

RNN's: Pros and Cons

Pros:

- Model size doesn't increase for longer inputs.
 - Reusing same parameters

Cons:

- Slow computation
- Can forget longer history/context

- Computation can use information from many previous steps
- Vanishing/exploding gradients

Vanishing/exploding gradient

Backpropagated loss multiplied at each layer

If |loss| > 1, exponential growth -> ∞

If loss > 0 and <1 exponential decay -> 0

Solution – Gradient Clipping

If the gradient is greater than some threshold, scale it before updating weights

Intuition:

Pascanu et al. 2013 http://proceedings.mlr.press/ v28/pascanu13.pdf

Take a step in the same direction, but smaller

Algorithm 1 Pseudo-code for norm clipping

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$

 $\mathbf{if} \quad \|\hat{\mathbf{g}}\| \ge threshold \ \mathbf{then}$
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$
 $\mathbf{end} \ \mathbf{if}$

LSTM (Long-Short Term Memory)

RNNs don't work with very long inputs

RNNs – long input

RNNs can remember anything (in theory)

Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)

LSTM internal

