4; %H"Z CS 383 — Computational
WL ext Analysis

Adam Poliak
02/27/2023

Slides adapted from Jordan Boyd-Graber,
Daniel Khashabi, Matt Gormley, Eren
Gultepe

Announcements
 HWO04

* Due Friday (shorter than the previous ones)

* Reading 05
* CTA/TADA/CSS papers using Word Embeddings
* Look at piazza for deadline

e Office hours this week:

» After class today
* Email me to schedule this week

* Final Project Ideation

250hwrite up —what idea do you have, who are you working
wit
Due before Spring break

Outline

Recap - Backpropagation

Issues when training NNs
Pytorch

Deep Averaging Neural Network

RNNs

Supervised Learning in a nutshell

In a ML model, what are we training?
* Parameters!

How do we learn values for parameters?

* Update them by using them to make predictions and
seeing how far off our predictions are

* Loss function!

Algorithm to learn weights?
* SGD
* Others exist but not covering them

Root sum of squares

1 n
EZ(YL' - B x;)?
i=1

1
L@Y) = 50 —9)
= 3 —a(B *x + Bp))?

Lets imagine we have one weight,
1
= s —o(fr1*x + fo))?

Find coefficient and bias to
minimize loss

1
L@,y = 5()’ — (B *x + Bo))?

oL

5=y —0(Brxx+Bo))a’ (By *x + Bo)x

oL

5= (v = 0By x + B))a" (Br *x + o)

Symbolic differentiation
Con’s: lots of repeated computations

Computation graph

A way to represent an expression broken down into
separate operations.

Each operation is a node in a graph

At each node, store value from forward pass, and
values of the loss from backward pass

Backpropagation

Computing derivative of the output with respect to
intermediate variables (including the input)

1. Create computation graph

2. Write down the multi-variable derivative of each
node in the graph

3. Compute forward pass

4. Starting at the last night, propagate the loss
backwards

One node view

Downstream gradient

XL

9z Ox

\

oL
0z

Figure from Andrej Karpathy

Training Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The
algorithm defines a directed acyclic graph, where each variableis a
node (i.e. the “computation graph”)

2. Visit each node in topological order.
For variable u, with inputs v,,..., vy
a. Compute u, = g(v,... vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/du; to o and dy/dy = 1.
2. Visit each node in reverse topologlcal order.
For variable u, = g(v,,..., vy)
a. We already know dy/du
b. Increment dy/dv, by (dy/du)(du;/dv;)
(Choice of algorlthm ensures computmg (du/dv;) is easy)

Return partial derivatives dy/du. for all variables Slide from Matt Gormley

backward pass

L _ 9Ldh _

oL dLag J—

aa_agaa_lz

Exploding gradient

The gradient can accumulate, becoming very big

Issues:
might move our weights too much
result in Nan

Solution:
Clipping
Maximum value for gradients
Can be dynamic

backward pass

L _ 9Ldh _

oL dLag J—

aa_agaa_lz

Vanishing gradient

The gradient become 0

Issues:

wont be able to update weights (because O gets
passed all the way back)

stuck in a local optima

Solution:
ReLU activation function
z = max(0, z)

RelLU

10

-5

One node view

Dead neuron

In forward pass, output of a node w/ RelLU activation
often will be O

Issues:
wont pass information from one node to the next

lots of useless nodes

Solution:

f)=ay

Leaky ReLU activation function

Outline

Recap - Backpropagation

Issues when training NNs
Pytorch

Deep Averaging Neural Network

RNNs

Pytorch

Torch: Facebook’s deep learning framework
Originally written in Lua (C backend)
Optimized to run computations on GPU

Mature, industry-supported framework

Defining a model

import torch
from torch import nn

class LogisticRegression(nn.Module):
def _init_ (self, input_size, num_classes):
super (LogisticRegression, self).__init__()
self.linear = nn.Linear(input_size, num_classes)
def forward(self, x):

out = self.linear(x)
return out

nn.Module

Base class for all neural network modules.

Creates a computation graph

Define the modelin 1ni1it
Specify how to make predictions in Torward

If only use built-in modules, no need to
implement backprop

Defining a model

import torch
from torch import nn

class FNN(nn.Module):
def init (self, input_size, hidden_size, num_classes):
super (FNN, self)._ _init__ ()
self.input_size = input_size
self.11 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.12 = nn.Linear(hidden_size, num_classes)

def forward(self, x):
out = self.11(x)
out = self.relu(out)
out = self.12(out)

no activation and no softmax at the end
return out

Train @ model

Define:

* Loss function

* Learning algorithm (e.g. SGD)
* Learning rate

* Number of epochs

num_epochs = 100

learning_rate = 0.003

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
loss_fn = nn.CrossEntropyLoss()

Train @ model

In each iteration:

* Make a prediction

* Compute the loss

» Autograd (Automatic differentiation), backprop
e Update the weights

optimizer.zero_grad()

prediction = model(X[i])

loss _val = loss_fn(prediction, labels[0]1[i])

loss_val.backward()
optimizer.step()

https://pytorch.org/docs/stable/autograd.html

Train @ model

Training the Model
for epoch in range(num_epochs):
num_correct = 0
for i in range(100):
optimizer.zero_grad()
prediction = model(X[1])
loss_val = loss_fn(prediction, labels[01[i])
loss_val.backward()
optimizer.step()

print(f"loss at epoch {epoch}: {loss_vall}")
print(f"accuracy at epoch {epoch}: {num_correct / 100}")

Classity a tweet as viral or not

Francois Chollet &
@fchollet

When companies that train deep learning models talk about AGI, it's as if
a 3D printing company talked about how the next generation of the

technology was going to bring universal abundance by enabling arbitrary
matter replication -- if we can avoid the grey goo scenario

1:26 PM - Feb 26, 2023 - 149.6K Views

93 Retweets 16 Quote Tweets 574 Likes

Classity a tweet as viral or not

Taylor Swift €& @taylorswift13 - Jan 27

The Lavender Haze video is out now. There is lots of lavender. There is lots
of haze. There is my incredible costar @laith_ashley who | absolutely
adored working with.

Q 7985 1 104.6K Q 4351K i 18.2M o

Output layer

Classify a
tweet as viral
or not

Hidden layer

Hidden layer

Input layer

Taylor Swift & @taylorswift13 - Jan 27

The Lavender Haze video is out now. There is lots of lavender. There is lots

of haze. There is my incredible costar @laith_ashley who | absolutely
adored working with.

Output layer

Classify a
tweet as viral B i L
or not

Hidden layer

Input layer

‘ Rihanna € @rihanna - Feb 15
' ~~ my son so fine! Idc idc idc!
How crazy both of my babies were in these photos and mommy had no

clue @@

thank you so much @edward_enninful and @inezandvinoodh for
celebrating us as a family!

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

Outline

Recap - Backpropagation

Issues when training NNs
Pytorch

Deep Averaging Neural Network

RNNs

Deep Averaging Network

Represent each document as a continuous bag of
words, averaging the word embeddings

X = Wy, Wy, ... Wy,
Zo = CBOW (W, Wy, ...w,,). CBOW = z E[w;]
i

y = MLP(z,)

Multilayer Perceptron

Feed-forward NN

MLPl —_ g(le + bl)WZ + bz

MLP, = g(g(xW; + by)W, + by) W3 + bs

hy, = o(xW;) hy = o(a(xW)W,

Output layer

Hidden layer

Hidden layer

Input layer

Deep Averaging Network

Represent each document as a continous bag of
words, i.e. averaging the word embeddings

X = Wy, Wy, ... Wy,
Zo = CBOW (W, Wy, ...w,,). CBOW = z E[w;]
i

y = MLP(z,)

Homework after spring break

FFN’s issues

Input size is fixed, but the length of text (or a
document) is variable

Solutions:
1. Create a fixed length representation
2. Recurrent Neural Networks

Outline

Recap - Backpropagation

Issues when training NNs
Pytorch

Deep Averaging Neural Network

RNNs

RNN - motivation

How can we model a long (possibly infinite) context
using a finite model?

Recursion

Recurrent Neural Networks are a family of NNs that
learn sequential data via recursive dynamics

Recurrent Neural Network (RNN)

he = f(he—1,x¢)

input x; and its previous hidden

state h;_, and outputs a revised
state h;. l I

A loop allows information to
be passed from one step of the
network to the next.

In the diagram, f(...) looks at some @
A

Unrolling an RNN

®) @
] L1
A A - A

6 © 0 © o

A recurrent neural network can be thought of as
multiple copies of the same network, each passing a
message to a successor.

RNN cell

S;i = R(x;,5;-1,0) };i

9i = 0(s) Pt BNy

Si-1 —> R, O —> s

)

A

Unrolling RNN

X1 29) X3 X4 X5

so0—> R,0 L R, O 2» R, O ﬁ» R, O ﬁ» R, O }—»SS

A ' ' A ' " A ' \ A ' " A

X1 X2 X3 X4 X5

0

Pass in one word at a time

Compute probability over entire vocab by applying

predictive head to last output

RNN: Forward

Error CEGyL9"Y

Hidden layer Q0000

w1
Input layer @

X
She

Y1

Output layer l 0000 l
v 1
1

CE(y,y) = — z Y log Yy

wev

RNN: Forward ~ CEG.9)=-) wlogw

wev

Error CEGyLIY) CE(y?,9%)
yl 5;2
Output layer l 0000 I Q000
v 1

T

S

vV
Hidden layer 000 »

O
Q
O
O
®)
O

w
Input layer @

She went

:

RNN: Forward ~ CEG.9)=-) wlogw

wWEV
Error CE(yLy") CE(y2,92) CE(y%.9%)
V1 9.
Output layer IOOOOI 0000

V
Hidden layer Q0000 »

Input layer @ @ m

RNN: Forward ~ CEG.9)=-) wlogw

wevV
Error CE(yLp"D) CE(y%,9%) CE(y3,9%) CE(y*,9%)
V1 V2 V3 Va
Output layer Q000 0000 OOOO 0000

UT . UT v UT . UT

Hidden layer Q0000) =P (COOO0) = (CO000) =P (©0000)

WT WT WT WT

Input layer Q000 Q000 (0000) Q000
X1 X5 X3 X4

She went to class

RNN: Forward

wev

CE(y,y) = — z Y log Yy

Loss is just averaging Cross-Entropy all predictions

Error

Output layer 5}

Hidden layer

Input layer

CE(yL9"Y)

went?

0000

CE(y?%,9%)

over?

Al

(©0000)

0000

w1

Al

C0000

CE(y3,9°)

class?
Q000

CE(y*,3%)

RNN: Backwards — CEG.9) =~) »logs

wev

Compute the loss at the end, then propagate
derivative of loss back to update the parameters

Error CE(yLy"D) CE(y?,9%) CE(y3,9°) CE(y*,9%)
went? over? class? after?
Output layer Q000 0000 IOOOOI Q0000

UT v UT . UT UT

4
Hiddenlayer (QOOOO] == (OOOOQ) = (CO000) =) (CCO00)

vt wt wt wt

She went to class

N . backpropagated
Training RNNs feedback

books

—_ h
I
1
A

“Backprop over time”

E

U

h© R h(®2) h®) h4) !

0 0 0 o |

1. Compute L for a batch |e Wi st << -0 -Wijo Wi 01—

o M) i @ I

of sentences 0 o ||| !|e o)

2. Compute gradients of e OWe*' OWe“ OWe“
L in respect to parameters o8| ?|9| (9| el
O O) O
3. Repeat P’ T e Te
the cat sat on

) (2 nelB) ey

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

“SO rryIl

Output layer Q000

Al

Hidden layer Q0000

T

w

Input layer

<START>

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

“Sorry” Harry
Output layer 0000 0000

ot vt
Hiddenlayer (OO0 OO] == (GOOOJ)
w w

Input layer @ @

x1 xZ
<START> “Sorry”

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

"Sorry” Harry shouted,
Output layer IOOOOI [OOOO] Q000

Al

|4 U T V
Hidden layer » Q0000 -* 00000

-
—p

Generating with RNNSs

Until we see a </s>, generate the most likely next
word by sampling from previously predicted word

"Sorry” Harry shouted, panicking
Output layer 0000 0000 OOOO Q0000

E Y S S

Hiddenlayer (QOOO0) == (COO00) = (O0000) =P (COO00

WT WT WT WT

Input layer |.‘.. | l‘... l I..“ I |.".
X1 X2 X3 X4

<START> “Sorry” Harry shouted,

RNNs applied to other tasks

many to one many to many many to many

Text Classification Language Modeling POSTags

RNN’s: Pros and Cons

Pros:

* Model size doesn’t
increase for longer
inputs.

* Reusing same
parameters

 Computation can use
information from many
previous steps

Cons:
e Slow computation

e Can forget longer
history/context

* Vanishing/exploding
gradients

Vanishing/exploding gradient
Backpropagated loss multiplied at each layer

If |loss|> 1,

exponential growth -> oo

If loss >0 and <1

exponential decay -> 0

Solution — Gradient Clipping

If the gradient is greater than some threshold, scale
it before updating weights

Pascanu et al. 2013
http://proceedings.mir.press/
Intuition: v28/pascanul3.pdf

Take a step in the same direction, but smaller

Algorithm 1 Pseudo-code for norm clipping
g < 39
if ||g|| > threshold then

~ , threshold A
& el B

end if

LSTM (Long-Short Term Memory)

RNNs don’t work with very long inputs

RNNs —long input

RNNs can remember anything (in theory)
Sometimes its important to forget

Solution: Long-Short Term Memory (LSTM)

RNN internal

LSTM internal

® ®
T A
a N\
> ———
A ;5’%
— | | L__J
\, J

&) ©

