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Announcements

* HW04
* Due next Wednesday 03/01
* Will be released later today

* Reading 05

* Due Monday 02/27 - CTA/TADA/CSS papers using Word
Embeddings

 Office hours:
* Need to change time this week



Final Project

Deliverables:

* |deation
250 write up — what idea do you have
Due sometime next week

* Proposal
Due write after spring break

* Presentation
Maybe last day of class

* Writeup, code, data
End of finals?



Recap — last week

* Regression vs classification
* Linear Regression vs Logistic Regression

* Learning weights
* SGD!
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SGD Example



Working through an example

* One step of gradient descent

* A mini-sentiment example, where the true y=1
(positive)

* Two features:
x; =3 (count of positive lexicon words)
X, =2 (count of negative lexicon words)
Assume 3 parameters (2 weights and 1 bias) in ©° are zero:
w;=w,=b =0
n=0.1



Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —NMVL(f(x;0),y)
° where  9Lce(hy) _ lo(w-x+b)—ylx;

aWj
* Gradient vector has 3 dimensions:
IdLce(3,y)
8w1A
Voo = [ ILcg ().y) }

ow
aLCE éay>
ob
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Example of gradient descent
w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —NMVL(f(x;0),y)
° where  9Lce(hy) _ lo(w-x+b)—ylx;

aWj

 Gradient vector has 3 dimensions:

dLcE (9,

HEEL T (o(wex+b)—y)n
Vo= | 25020 | — | (ow-1+5) =)

achlgzy,y) G(w - X+ b) —y



Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —MVL(f(x:0),y)
. where aL(;EM(}f’y) = [o(w-x+b) —yx;

 Gradient vector has 3 dimensions:

dLcE (P,

HERT T (owextb)—yx ] [ (o(0) =Dy
Vip = | 20 | = | (o(w-x+b)—y)xs | = | (6(0)— )x,
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Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —NMVL(f(x;0),y)
° where  9Lce(hy) _ lo(w-x+b)—ylx;

aWj

 Gradient vector has 3 dimensions:

ILcE(y)
Iw). (c(w-x+b)—y)x (6(0)—1)x —0.5x, —1.5
Vip = | 200 | = | (o(w-x+b)—y)xs | = | (6(0)=1)x, | = | =0.5x, | = | —1.0
ILcr(3.) G(w-x+b)—y c(0)—1 —0.5 —0.5

db



Example of gradient descent

JLcE (9, -
o) (G(w-x+b) —y)x (6(0) — 1)x; —0.5x, 15
Vb = W = | (cw-x+b)—y)x2 | = | (6(0)—1)x | = | —05x | =] —1.0
aché,y) c(w-x+b)—y c(0)—1 —0.5 —0.5
b

Now that we have a gradient, we compute the new parameter vector 61 by moving 8% in the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1

8! =



Example of gradient descent

o) (6w-x+b) —yx 1 [ (6(0)= D —0.5x, 15
Vi = | 2HB0D | — | (G(w-x+b)—y)xs | = | (6(0)=1)xy | = | —0.5x | = | —1.0

d
Lex () o(w-x+b)—y c(0)—1 —0.5 —0.5
db

Now that we have a gradient, we compute the new parameter vector 61 by moving 8% in the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1
Wy | [ —1.5 ]
0'=|w, | —m| —1.0
b 05




Example of gradient descent

o) (6w-x+b) —yx 1 [ (6(0)= D —0.5x, 15
Vi = | 2HB0D | — | (G(w-x+b)—y)xs | = | (6(0)=1)xy | = | —0.5x | = | —1.0

d
Lex () o(w-x+b)—y c(0)—1 —0.5 —0.5
db

Now that we have a gradient, we compute the new parameter vector 61 by moving 8% in the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1
[ wy | —15] [ .15]
0'=|w | —-n|-10]|=].1
b - —05] .05




Example of gradie
—8L5§V(f’y) o(w-x+b)—y)x |

Vs = —&Lgiv(y,y) = | (c(w-x+b)—y)x2
8chl§2)?,y) oc(w-x+b)—y ]

Now that we have a gradient, we compute the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0)
Wy | [ —1.5 ]

0'=|w, | —m| —1.0
b - —0.5 |

nt descent
|: (G(O)—l)x1 ] |:0.5)C1 ] [1.5‘|
= G(O) — 1))62 = —0.5X2 = —1.0
c(0)—1 ~0.5 ~0.5

new parameter vector 81 by moving 69 in the

7y) n=0.1;

15
A

.05

Note that enough negative examples would eventually make w, negative
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Multinomial Logistic Regression
aka softmax regression, multinomial logit

Softmax: a generalization of the sigmoid

e Takes a vector of k values
* think scores for each class

* Outputs a probability distribution
e each value in the range [0,1]
* all the values summingto 1

exp(z;)

1<i<k
Z;{:1 exp(z;)

softmax(z;) =

exp(z1) exp(zz) exp(z3)

softmax(z) = , ,
—1exp(z) Lj-; exp(z)) i=1€xp(z;)

LIRS |
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Mini-batch training

* Stochastic gradient descent chooses a single
random example at a time.

* That can result in choppy movements

* More common to compute gradient over batches
of training instances.

* Batch training: entire dataset
* Mini-batch training: m examples (512, or 1024)



Overfitting

* A model that perfectly match the training data has
a problem.

* It will also overfit to the data, modeling noise

* A random word that perfectly predicts y (it happens to
only occur in one class) will get a very high weight.

* Failing to generalize to a test set without this word.

* A good model should be able to generalize



Overfitting

Useful or harmless features

X1 = "this"
+ X2 = "movie
: . : X3 = "hated"
* This movie drew me in, and e
it'll do the same to you. X4 = "drew me in"
- 4gram features that just

"memorize" training set and might

| can't tell you how much | hated this movie. It
cause problems

sucked.
X5 = "the same to you"
X7 ="tell you how much"

23



Overfitting

e 4-gram model on tiny data will just memorize the data
* 100% accuracy on the training set

* But it will be surprised by the novel 4-grams in the test data
e Low accuracy on test set

* Models that are too powerful can overfit the data

 Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

* How to avoid overfitting?
* Regularization in logistic regression
* Dropout in neural networks



Regularization

A solution for overfitting
* Add a regularization term R(0) to the loss function

(for now written as maximizing logprob rather than minimizing loss)

6 = argmax ) logP(y"x"")) — aR(6)
o =

* |[dea: choose an R(0) that penalizes large weights

e fitting the data well with lots of big weights not as good
as fitting the data a little less well, with small weights



L2 Regularization (= ridge
regression)

* The sum of the squares of the weights

 The name is because this is the (square of the)
L2 norm ||0||,, = Euclidean distance of 0 to the

origin. n
= [|6][3=>) 67
j=1

* L2 regularized objective function:

6 = argmax {ZlogP } —05292

6 =1



L1 Regularization (= lasso
regression)

* The sum of the (absolute value of the) weights

* Named after the L1 norm || #||;, = sum of the
absolute values of the Welghts = Manhattan

distance
— H9H1—Z\91!

* L1 regularized objective function:

6 = argmax {ZlogP } —(XZ]QJI

6 1=



Outline

SGD example
Beyond Binary Classification
Implementation Tricks

Neural Networks
Feed forward
Non-linear Activation Functions
Computation Graph
Back-propagation
Neural LM



Prediction: NLP/ML vs CTA/TADA

4 8

NLP/ML: CTA/TADA/CSS:
* Make prediction about * Apply labels to examples
unseen data * Use previous methods to
* Predict if a stock will go up find differences
or down based on social

* Learn something about
different categories
* Are there different
terms/concepts used to

describe male vs female_
professors on course reviews

media posts



Logistic Regression




Logistic Regression




Logistic Regression




Logistic Regression




Logistic Regression

1.0 -

0.8 -

0.2

0.0



Could we train Logistic Regression
on these two training sets?




Training Logistic Regression on
these two training sets




Predicting with Logistic
Regression

Given x = [X1, X2, X3, ..., Xj]

Learn weights B = [B1, B2, B3, - Bj]
Compute a dot product x * f8

Dot product is a linear combination

We need to add some non-linearity



Predicting with Logistic
Regression

Is sigmoid enough? Does adding sigmoid allows us to
model non-linearly separable data?

https://playground.tensorflow.org/



Outline

SGD example
Beyond Binary Classification
Implementation Tricks

Neural Networks
Feed forward
Non-linear Activation Functions
Computation Graph
Back-propagation
Neural LM



Logistic Regression

We make a prediction by taking the doc product of the
features (covariates) and weights (coefficients)

o -x)=
j 1
5 o(8; - x:) p 2
X 2
B2
X3 B3
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Logistic Regression

We make a prediction by taking the doc product of the
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Logistic Regression

We make a prediction by taking the doc product of the
features (covariates) and weights (coefficients)

o -x)=
j 1
5 o(8; - x:) p 2
X 2
B2
X3 B3

<



A neuron




Logistic Regression as NN
A single layer neural network
Input layer: features
Output layer: prediction B1
We can pass the output X3 _ s

of the neuron to another x, 3.
neuron

Bo

<



A two layered network

Input Iayer; features We can add more hidden layers and

more neurons at each layer

Output layer: prediction  https:/playground.tensorflow.org/
Hidden layer: h,

X1

L1 Lo Bo
X2

B2
X 3 B3 ho

<

X4 Ba
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Feed forward NN



Feed forward NN




Feed forward NN




Feed forward NN




Feed forward NN

All nodes in between each layer is are connected

Input layer: features, Output layer: prediction, 2 Hidden layers




~eed forward NN
Making predictions




~eed forward NN
Making predictions




~eed forward NN
Making predictions

w, oxW)




~eed forward NN
Making predictions

hO = O'(xW1)



~eed forward NN
Making predictions

hO = O'(xW1)



~eed forward NN
Making predictions

hO = O'(xW1)



~eed forward NN
Making predictions

hO = O'(xW1)



Outline

https://playground.tensorflow.org/

SGD example
Beyond Binary Classification
Implementation Tricks

Neural Networks
Feed forward
Non-linear Activation Functions
Computation Graph
Back-propagation



tanh(z)

y:

Non-Linear Activation Functions
besides sigmoid

Most Common:
Z __ p— <X
y:e e ymax(Z’V
5
:
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Computation graph
L(a,b,c) = c(a+2b)

d = Z%xb
Computations: e = a+d
k.. = ke



Example:

L(a,b,c) = c(a+2b)
g4 = Zxh
Computations: e = a+d
l. = exe
3 forward pass
e=5 B

64
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Backwards differentiation in computation graphs

* The importance of the computation graph
comes from the backward pass

* This is used to compute the derivatives that
we’ll need for the weight update.



E
xample "

JdL

b,c) = c(a+2b)
g = J2%b
e = a+d
L. = exe

JdL

dL
We want: a4’ b’ and Je

The derivative a—L,
da
affects L.

tells us how much a small change in a

67



The chain rule

* Computing the derivative of a composite function:

S@uot) L=

df du dv dw
s f(X) =u(vw(x)) dx  dv dw dx




Example
L(a,b,c) = c(a+2b)

g = 2%b

e = a+d

L. = iexe oI
%: e
oL dL de
Jda _ de da
oL dL de dd

b  de dd db

69



Example

L(a,b,c) = c(a+2b)

d

N o

2%b
a-+d

c*ke

e=a+d :

d=2b :

JdL

da
oL

db

a1 de
de da
dL de dd

de dd db

70



Example

L(a,b,c) = c(a+2b)

d

4N

[

2%b
a-+d

c*ke

e=a+d :

d=2b :

JdL

da
oL

db

o
de

dL de

de da
dL de dd

de dd db

o
dc



Example

L(a,b,c) = c(a+2b)

d

N o

2%b
a-+d

c*ke

e=a+d :

aq =

2b :

JdL

da
oL

db

JdL
de

dL de

de da

dL de dd

de dd db

dL
=C, = =

dc

€



Example

% B dL de
da  de da
L(a,b,c) = c(a+2D) oL JL de dd
d = 2xb b~ Je dd db
e = a+d
L. = ie%e B . JdL JdL
L.=%F : 3e_C% e
I
e=a-+a . 8a_ 5’(1_



Example

L(a,b,c) = c(a+2b)

g = 2%b
e = a+d
L. = exe

JdL

da
oL

db

dL de
de da
dL de dd
de dd db

74



Example

L(a,b,c) = c(a+2b)

g = 2%b
e = a+d
L. = exe

JdL

da
oL

db

dL de
de da
dL de dd
de dd db

75



dL

da
oL

db

JoL  JL

x—c,%—e
de de

S =15o =1
dd

76
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Detailed View




Detailed View

“local gradient”
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Detailed View

“local gradient”
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Detailed View

i
“local gradient”
~ .4
PG
> 0'9\ Z
\ ‘2'
Downstream >
gradients” ) =
3
%/; n
B %z 3 Upstream
gradient”

Figure from Andrej Karpathy



Detailed View

b i1
“local gradient”
X O
X
> é,\ A
\\ ‘2'
Downstream >
gradients” ) =

0z
%;
02 7, “Upstream

gradient”

Figure from Andrej Karpathy



Backward differentiation on a two

layer network

Y

Sigmoid activation

w2l
RelLU activation

Wil

83



Backward differentiation on a two
layer network

1yl gl
a'! = ReLU(z!M) dReLU(z) :{0 for z<0
2 w2l 4 gl dz L for =0

a? = (72 9@ _ 6()(1- 0(2))
, dz

<>
|
Ql_|



Backward differentiation on a 2-
layer network

dReLU(z) [0 for z<0
dz 1 for z>0

291 _ o(2)(1-0(2)

(0 for z<0
dz 11 for z>0




| EY Z[l _ meﬂim
Starting off the backward pass: Py e,
Z < = a
(Il write a for al?! and z for z12]) d? = o)
L®,y) = —(ylog(®) + (1 — y)log(1 — ) § = a’
L(a,y) = —(yloga + (1 — y)log(1 — a))
0L _ 0L da
9z 0Oa 0z

L dlog(a) dlog(1 —a)
ﬁ__<<y da >+(1_Y) da )
1 1 vy y—1
- ‘((ya)”l‘” m“”) (G +1=d)

da oL y y-—1
—=a(l—a —=—(= —a)=a-—
0z ( ) 0z (a+1—a) all—a)=a-y




Summary

* For training, we need the derivative of the loss with respect
to weights in early layers of the network

 Butlossis computed only at the very end of the network!
* Solution: backward differentiation

* Given a computation graph and the derivatives of all the
functions in it we can automatically compute the derivative
of the loss with respect to these early weights.
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Neural Language Models (LMs)

* Language Modeling: Calculating the probability of
the next word in a sequence given some history.

* We've seen N-gram based LMs

e But neural network LMs far outperform n-gram
language models

*State-of-the-art neural LMs are based on more
powerful neural network technology like
Transformers

*But simple feedforward LMs can do almost as well!



Simple feedforward Neural
Language Models

* Task: predict next word w,
given prior words w,_{, W, », W3, ...

* Problem: Now we’re dealing with sequences of
arbitrary length.

* Solution: Sliding windows (of fixed length)

1 1
P(wi W) = P(wi|w;_yiq)



Neural Language Model

p(aardvark|...) p(fish|...)  p(for]...) p(zebral...)
t t ! f

Output layer
softmax

Projection layer

embeddings
E embedding for  embedding for embedding for
word 35 word 9925 word 45180
— | I
-[ and Jthanks] for all the | 2 |.¢
R W2 Vo Wi
—

91



Masked Language Model

* Task: predict w,
given prior surrounding words

Wi 3,Wi2,Wi 1, Wity Werp ) Wigs

* Problem: Now we’re dealing with sequences of
arbitrary length.

* Solution: Sliding windows (of fixed length)



Why Neural LMs work better than N-
gram LMs

* Training data:

 We've seen: | have to make sure that the cat gets fed.
* Never seen: dog gets fed

* Test data:

* | forgot to make sure that the dog gets

* N-gram LM can't predict "fed"!

* Neural LM can use similarity of "cat" and "dog"
embeddings to generalize and predict “fed” after dog



Summary — Feed Forward
Networks

Every node in one layer is connected to every node in the next layer

Define the Network
Number of hidden layers
Size of each hidden layer
Activation Function

Forward pass:
Matrix multiplications
Backward pass:

Compute the gradients and propagate them
backwards — Backpropagation



ssues when training Neural
Networks

Exploding/vanishing gradients

Overfitting



FFN’s issues
Fixed input size
Solutions:

1. Create a fixed length representation
2. Recurrent Neural Networks



