s18 32)1 > Y O/ "

';.a A

.

% = CS 383 — Computational Text
P ;m g

H'ﬂ Analysis

Lecture 9
Stochastic Gradient Descent,

Adam Poliak
02/15/2023

Slides adapted Dan Jurafsky, Jordan Boyd-
Graber, Nate Chambers

Announcements

e Reading 03 released Monday
* Due Monday 02/13

HWO03 due Wednesday 02/15 (tonight)

Reading 04
* Due Monday 02/20 — Dictionary Methods

HWO04

* Due next Friday
* Will be released later today

Reading 05 — will be released later this week
* Due Monday 02/27 - CTA/TADA/CSS papers using Word Embeddings

Office hours:
e Thursday 3-4:45pm

Prediction Outline

* Linear Regression
* Logistic Regression
* Learning weights — SGD (today)

* Neural Networks (might start today)

* Feed Forward Networks
 Word2Vec

 Recurrent Neural Networks
e LSTMs

* Transformers
* Attention
« BERT

Outline

Logistic Regression Examples
Learning Weights - SGD
Beyond Binary Classification
Implementation Tricks

Neural Networks

|dea of logistic regression

* We'll compute w-x+b

* And then we’ll pass it through the
sigmoid function:

o(w-x+b)
* And we'll just treat it as a probability

Making probabilities with sigmoids

P(y=1) = o(w-x+D)
1
l4+exp(—(w-x+Db))

Py=0) = 1l—oc(w-x+b)

1
 14exp(—(w-x+b))
exp (—(w-x+b))
l+exp(—(w-x+b))

= 1

Turning a probability into a classifier

. | 1if P(y=1Jx)>0.5
Y=Y 0 otherwise

0.5 here is called the decision boundary

The probabilistic classifier
P(y=1)

o(w-x+Db)

Turning a probability into a classifier

. [1if Py=1]x)>0.5 1Hwxtb>0
Y= 0 otherwise 1f wx+b <0

Examples

Example 1: Empty Document

I k- ()

bias
“viagra” ,81 2.0
“mother” B -1.0
“work” S -0.5 1
“nigeria” B4 3.0 P(Y = 0) = 1+ exp(O.l) =0.48
exp(0.1)
Py =1)= 1+ exp(0.1) 0-52

Bias 5y represents the class priors

Examples
| Feature | Coefficient | Weight NSNS
Bo 0.1

bias X = { Mother,Nigeria}
“viagra” B 2.0
“mother” B -1.0
“work” £3 -0.5
“nigeria” Ba 3.0
P(Y =0) = -
(¥'=0) = 1+exp(0.1 —1.04+3.0) 0-11
exp(0.1 — 1.0 + 3.0)
PY=1)= =0.88

1+ exp(0.1 — 1.0 4+ 3.0)

Examples
- Example 3:
IR X - (iother, Work, Nigeria, Mother)

bias
“viagra” B 2.0
“mother” iy -1.0
“work” B3 -0.5
“nigeria” Ba 3.0
1
P(Y = 0) =

1+exp(0.1 —1.0+2.0+3.0 —1.0) =0.60

exp(0.1 —1.0+ 2.0+ 3.0 —1.0)
1+exp(0.1 —1.0+2.0+3.0 —1.0) =0.30

P(Y=1) =

Logistic Regression

* Given a set of weights, 5, compute conditional
likelihood P(y |, x)

* Find the weights that maximize the conditional
likelihood on training data

* Intuition: higher weights implies corresponding
feature is strongly indicative of the class for the
observation

Outline

Logistic Regression Examples
Learning Weights - SGD
Beyond Binary Classification
Implementation Tricks

Feedforward Networks

Process Learning Weights

1. Randomly initialize weights
2. Make predictions y

3. Quantify how close ¥ and y are
We call this the distance aka Loss function

4. Update weights accordingly
aka Optimization

5. Repeat 2-4

Process Learning Weights

1. Randomly initialize weights
2. Make predictions y

3. Quantify how close y and y are
We call this the distance aka Loss function

4. Update weights accordingly
aka Optimization

5. Repeat 2-4

Distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b)

from the true output:
Y [= either O or 1]

We'll call this difference our loss:
L(y ,y) = how much y differs from the true y
L(V ,y)is a loss function

Process Learning Weights

1. Randomly initialize weights
2. Make predictions y

3. Quantify how close ¥ and y are
We call this the distance aka Loss function

4. Update weights accordingly
aka Optimization

5. Repeat 2-4

hts that minimize the loss

—1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Find weights that minimize the loss

4.0

3.5

D 1o Lo(x*w) - y)

—1.0 -0.5 0.0 0.5 1.0 1.5 2.0

wei'g ht

Find weights that minimize the loss

4.0

3.5 7

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

wei'g ht

Find weights that minimize the loss

4.0

3.5 7

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

wei'g ht

Find weights that minimize the loss

4.0 -

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

wei'g ht

Find weights that minimize the loss

4.0

Find weights that minimize the loss

3.0

2.8

1.0 1.2 1.4 1.6 1.8 2.0

'weight'

Find weights that minimize the loss

4.0 1
How far down should we move

554 the weight?

3.0 T
This is called the step-size or

251 learning-rate

loss

2.0

1.5

1.0 A

0.5 A

o-o 1 I 1 I ! | !
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

wei'g ht

Find weights that minimize the loss

4.0 T

3.5 1

7))

8 2.0 1 .
1.5 -

4

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

we i'g ht

Find weights that minimize the loss

4.0

3.5 7

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

wei'g ht

How to update the weights

1. Find the direction of the derivative of the loss function

aka gradient of the loss

2. Move the weight in that direction

3. Then make a prediction on a new xy;;, Y(;; pair, and repeat
1 and 2

4. Repeat this for every example in our training set

Loss f

loss

4.0

3.5 7

3.0 1

2.5 7

2.0

1.5

1.0 A

0.5 A

0.0

unction properties

Differentiable

Have a local minimum

convex function

-1.0 -0.5 0.0 0.5 1.0 1.5

Wei'g ht

2.0

Moving to 2 weights

Cost(w,b)

-
-

X ERSBROEKIRL K75

h N N \\v Ny < .‘, -)‘4' < ,-4&' ’//
R \\.\'\ ‘ e ‘3,1‘\',",@ ",. ~l'"'l Ly~
S, N e T ‘\” - . P/ 7 T I
RN SO SUAZ KL P
— = i, et Y s
TN ‘.-?‘?o.’c’ -

-~

Process Learning Weights

1. Randomly initialize weights

2. Make predictions y Deta i IS !

3. Quantify how close y and y are
We call this the distance aka Loss function

4. Update weights accordingly
aka Optimization

5. Repeat 2-4

Loss function

Log likelihood

This probability is the likelihood
of the label giv

L@, y) =log(p(yi|xa@y, B)

Computing this loss across our entire dataset

L@y) =) log®(yolx £))

Recall

P(y=1) =
g (Z? Bejy * x{j})

P(y =0) =
1 -0 (Z? By *x{j})

Loss function

Ply=1) =
o(B *x)
Recall that o(...) is used to
P(y=0) = create probabilities
1 — o(B *x)

L@, y) =log(p(yia|xuy B)) =
log(a(B * x)) ify=1
log(1 — a(B *x)) ify=0

Loss function - examples

L, y) =
log(a(B * x)) ify=1
log(1 — o(B *x)) ify=0

Gold label (y) | Predicted (y) L(,y)

Loss function - examples

L, y) =
log(a(B * x)) ify=1
log(1 — o(B *x)) ify=0

Gold label (y) | Predicted (y) L(,y)

1 0.2
0 0.01
0 0.75
1 0.75

Loss function - examples

L, y) =
log(a(B * x)) ify=1
log(1 — o(B *x)) ify=0

Gold label (y) | Predicted (y) L(,y)

1 0.2 0.8
0 0.01 .99
0 0.75 0.75
1 0.75 0.25

Examples
| Feature | Coefficient | Weight NSNS
Bo 0.1

bias X = { Mother,Nigeria}
“viagra” B 2.0
“mother” iy -1.0
“work” B3 -0.5
“nigeria” N 3.0

P(Y =0) = 0.11
P(Y =1) = 0.88

What’s L(y,y) ify =0?
What's L(V,y) ify=1?

Loss function

LG y) =
log(a(B *x)) ify=1
log(1 — a(B *x)) ify=0

What about across our entire dataset?

L, y) =
= Y1og(p (v lxwy, B))

_onflog@(B *x)) ify=1
=i log(1 — o(B *x)) ify=0

Loss function

L, y) =
= Y1 log(p(yey %y B))

_onflog@(B +x) ify=1
=L log(1 — o(B *x)) ify=0

Process Learning Weights

1. Randomly initialize weights
2. Make predictions y

3. Quantify how close ¥ and y are
We call this the distance aka Loss function

4. Update weights accordingly
aka Optimization

5. Repeat 2-4

Details!

Loss function

L, y) =
= Y og(p (v lxwy, B))

_on Jlog(a(B *x)) ify=1
= i log(1 — o(B *x)) ify=0

How do we update the weights?
1. Compute the derivative/gradient of L

2. Update the weights based on the direction of the
derivative/gradient

Computing the gradient of L

L, y) =
= Y1 log(p(yey %y B))

What variable in the loss function can we update?

Answer: 5

When we compute VL, what variable should use to
take the derivative?

Answer: [take the derivate

Computing the gradient of L

VL ﬁL(U(ﬁ * X),Y)

How do we take the derivative of this?

Chain rule!

Chain Rule

If yis the result of

Then,

Example:

v _

dx

y=f(g(x))

dy df dg
dx dg dx
=f'[g(x)] * g'(x)

y= (x*+1)°

= 3(x% 4+ 1) * 2x
= 6x(x* + 1)?

Computing the gradient of L

VL ﬁL(U(ﬁ * X),Y)

What are our two functions here that depend on 7?

1.0
2.0 *x

Computing the gradient of L

VL ﬁL(U(ﬁ * X),Y)

What are our two functions here that depend on 7?
1.f=o0
2.8= [*x

Computing the gradient of L

d
VL = EL(G(E * %),)

What are our two functions here that depend on 7?
1.f=o0

2.8= [*x
VL = f'lg(x)] * g'(x)
=0'(B*x) g'(x)

Computing the gradient of L

f'lg)] * g'(x)
o' (B *x) g (x)

do

Whatsdﬁ

and %,8 * X7

EZG*(l —0)

o = o]
dx’ T dx |1+ e

_ O)(+e™) — (—e™)(1)
(1 + e*)?2

e—x

- (1 + e—x)2

Derivative I S
l+e*1+e™

of o 1 e*+(1-1)
l+e~ 1 +e*

I (I4+e™)-1
l+e™* 14>

1 (1+e™ 1

1 1]
https://hausetutorials.netlify.app/posts/2019- l+e*l 1+e™
12-01-neural-networks-deriving-the-sigmoid- = o(x)(1 — o(x))
derivative/

Computing the gradient of L

VL

f'lg(x)] = g(x)
o' (B *x) g (x)
0]

(B*x)(A —a(B*x))x

But remember, what’s L?

n jlog(a(B * x)) ify =1
2i log(1 — o(B *x)) ify=0

So, we need to apply the chain rule again

Computing the gradient of L

So, we need to apply the chain rule again.
Facts:

d 1
1 — log(x) = =

X

, s log(a(B * x)) ify =1
' "llog(1 — (B *x)) ify=0

3. VL=f"[gl)]*g'(x)

Computing the gradient of L

Wheny =1 Wheny =20
VL =log'(o) * o’ VL=1log'(1—0)*—a'

1

1
:E*(o' * (1 —o)x) 1_6(—(0'*(1_0-)35))
— (1 _ O')X _ —(o *(1 —0)x)

1—-o0

= —0X

Computing the gradient of L

VL =
s (1 —o)x ify =1
Ll —ox ify =0
vr = (1 —o)x ify =1
—0X ify=0

Putting it into one equation:
VL= (y —o)x

Computing the gradient of L

VL= (y —o0)x
dL
a5 (y —o)x

=(y —a(B*x))x

1
- (y 1+ e—(ﬁ*x))x

What if we have multiple (3’s?
Solution: partial derivatives!

Real gradients

* We have lots of weights/parameters

* For each parameter f3;, the gradient component j
tells us the slope with respect to that variable.

* “How much would a small change in (5; influence the
total loss function L£?”

* We express the slope as a partial derivative 0 of the loss
0 b
* The gradient is then defined as a vector of these
partials.

Computing the gradient of L
partial derivatives

VgLl =
g dr

dpBo
dL

dfq
dLl
dﬁj

What can we do after we computed the gradients?

Updating weights based on
gradients

AB =V L(p)

Update each individual weight:

aL(p)
pi < fbi — dg;

If we want to perform gradient ascent, we ...

dL
Bi < pi+ dﬁf)

Find weights that minimize the loss

4.0

Updating weights based on
gradients

AB =V L(p)

Update each individual weight:

aL(p)
pi < fbi — dg;

If we want to perform gradient ascent, we ...

dL(f)
Bi < B + B,

Process Learning Weights

1. Randomly initialize weights
2. Make predictions y

3. Quantify how close ¥ and y are
We call this the distance aka Loss function

4. Update weights accordingly
aka Optimization

5. Repeat 2-4

Stochastic Gradient Descent

1. Randomly initialize §;
2. For every {x;, y;} pair in our training set:

Compute the gradient of the loss
dL(p)

ap;
Update each weights based on the gradients

dL(f)
i < B — 1 T

3. Repeat 2 until convergance (or max epochs)
4. return f5;

Hyperparameters

* Hyperparameters:
* Briefly, a special kind of parameter for an ML model
* Instead of being learned by algorithm from supervision
(like regular parameters), they are chosen by algorithm
designer.
* The learning rate n is a hyperparameter
* too high: the learner will take big steps and overshoot
* too low: the learner will take too long

SGD Example

Working through an example

* One step of gradient descent

* A mini-sentiment example, where the true y=1
(positive)

* Two features:
x; =3 (count of positive lexicon words)
X, =2 (count of negative lexicon words)
Assume 3 parameters (2 weights and 1 bias) in ©° are zero:
w;=w,=b =0
n=0.1

Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —NMVL(f(x;0),y)
° where 9Lce(hy) _ lo(w-x+b)—ylx;

aWj
* Gradient vector has 3 dimensions:
IdLce(3,y)
8w1A
Voo = [ILcg ().y) }

ow
aLCE éay>
ob

Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —MVL(f(x:0),y)
. where aL(;EM(}f’y) = [o(w-x+b) —yx;

 Gradient vector has 3 dimensions:

ILcg($,y)
8w1
Voo = [ILcg(9.y) } _]

ow
aLCE éay>
ob

Example of gradient descent
w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —NMVL(f(x;0),y)
° where 9Lce(hy) _ lo(w-x+b)—ylx;

aWj

 Gradient vector has 3 dimensions:

dLcE (9,

HEEL T (o(wex+b)—y)n
Vo= | 25020 | — | (ow-1+5) =)

achlgzy,y) G(w - X+ b) —y

Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —MVL(f(x:0),y)
. where aL(;EM(}f’y) = [o(w-x+b) —yx;

 Gradient vector has 3 dimensions:

dLcE (P,

HERT T (owextb)—yx] [(o(0) =Dy
Vip = | 20 | = | (o(w-x+b)—y)xs | = | (6(0)—)x,

8chl§2y,y) oc(w-x+b)—y c(0)—1

Example of gradient descent

w;=w,=b =0;

e Update step for update O is: X, =3; X, =2
011 = 6, —NMVL(f(x;0),y)
° where 9Lce(hy) _ lo(w-x+b)—ylx;

aWj

 Gradient vector has 3 dimensions:

ILcE(y)
Iw). (c(w-x+b)—y)x (6(0)—1)x —0.5x, —1.5
Vip = | 200 | = | (o(w-x+b)—y)xs | = | (6(0)=1)x, | = | =0.5x, | = | —1.0
ILcr(3.) G(w-x+b)—y c(0)—1 —0.5 —0.5

db

Example of gradient descent

JLcE (9, -
o) (G(w-x+b) —y)x (6(0) — 1)x; —0.5x, 15
Vb = W = | (cw-x+b)—y)x2 | = | (6(0)—1)x | = | —05x | =] —1.0
aché,y) c(w-x+b)—y c(0)—1 —0.5 —0.5
b

Now that we have a gradient, we compute the new parameter vector 61 by moving 8% in the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1

8! =

Example of gradient descent

o) (6w-x+b) —yx 1 [(6(0)= D —0.5x, 15
Vi = | 2HB0D | — | (G(w-x+b)—y)xs | = | (6(0)=1)xy | = | —0.5x | = | —1.0

d
Lex () o(w-x+b)—y c(0)—1 —0.5 —0.5
db

Now that we have a gradient, we compute the new parameter vector 61 by moving 8% in the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1
Wy | [—1.5]
0'=|w, | —m| —1.0
b 05

Example of gradient descent

o) (6w-x+b) —yx 1 [(6(0)= D —0.5x, 15
Vi = | 2HB0D | — | (G(w-x+b)—y)xs | = | (6(0)=1)xy | = | —0.5x | = | —1.0

d
Lex () o(w-x+b)—y c(0)—1 —0.5 —0.5
db

Now that we have a gradient, we compute the new parameter vector 61 by moving 8% in the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0),y) n=0.1
[wy | —15] [.15]
0'=|w | —-n|-10]|=].1
b - —05] .05

Example of gradie
—8L5§V(f’y) o(w-x+b)—y)x |

Vs = —&Lgiv(y,y) = | (c(w-x+b)—y)x2
8chl§2)?,y) oc(w-x+b)—y]

Now that we have a gradient, we compute the
opposite direction from the gradient:

611 = 6, —nVL(f(x;0)
Wy | [—1.5]

0'=|w, | —m| —1.0
b - —0.5 |

nt descent
|: (G(O)—l)x1] |:0.5)C1] [1.5‘|
= G(O) — 1))62 = —0.5X2 = —1.0
c(0)—1 ~0.5 ~0.5

new parameter vector 81 by moving 69 in the

7y) n=0.1;

15
A

.05

Note that enough negative examples would eventually make w, negative

Outline

Logistic Regression Examples
Learning Weights - SGD
Beyond Binary Classification
Implementation Tricks

Neural Networks

* Make prediction about
unseen data
* Predict if a stock will go

up or down based on
social media posts

CTA/TADA/CSS:

* Learn something about
different categories

* Are there different
terms/concepts used to
describe male vs female

pro_fessors on course
reviews

Outline

Logistic Regression Examples
Learning Weights - SGD
Beyond Binary Classification
Implementation Tricks

Neural Networks

Multinomial Logistic Regression
aka softmax regression, multinomial logit

Softmax: a generalization of the sigmoid

e Takes a vector of k values
* think scores for each class

* Outputs a probability distribution
e each value in the range [0,1]
* all the values summingto 1

exp(z;)

1<i<k
Z;{:1 exp(z;)

softmax(z;) =

exp(z1) exp(zz) exp(z3)

softmax(z) = , ,
—1exp(z) Lj-; exp(z)) i=1€xp(z;)

LIRS |

Outline

Logistic Regression Examples
Learning Weights - SGD
Beyond Binary Classification
Implementation Tricks

Neural Networks

Mini-batch training

* Stochastic gradient descent chooses a single
random example at a time.

* That can result in choppy movements

* More common to compute gradient over batches
of training instances.

* Batch training: entire dataset
* Mini-batch training: m examples (512, or 1024)

Overfitting

* A model that perfectly match the training data has
a problem.

* It will also overfit to the data, modeling noise

* A random word that perfectly predicts y (it happens to
only occur in one class) will get a very high weight.

* Failing to generalize to a test set without this word.

* A good model should be able to generalize

Overfitting

Useful or harmless features

X1 = "this"
+ X2 = "movie
: . : X3 = "hated"
* This movie drew me in, and e
it'll do the same to you. X4 = "drew me in"
- 4gram features that just

"memorize" training set and might

| can't tell you how much | hated this movie. It
cause problems

sucked.
X5 = "the same to you"
X7 ="tell you how much"

34

Overfitting

e 4-gram model on tiny data will just memorize the data
* 100% accuracy on the training set

* But it will be surprised by the novel 4-grams in the test data
e Low accuracy on test set

* Models that are too powerful can overfit the data

 Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

* How to avoid overfitting?
* Regularization in logistic regression
* Dropout in neural networks

Regularization

A solution for overfitting
* Add a regularization term R(0) to the loss function

(for now written as maximizing logprob rather than minimizing loss)

6 = argmax) logP(y"x"")) — aR(6)
o =

* |[dea: choose an R(0) that penalizes large weights

e fitting the data well with lots of big weights not as good
as fitting the data a little less well, with small weights

L2 Regularization (= ridge
regression)

* The sum of the squares of the weights

 The name is because this is the (square of the)
L2 norm ||0||,, = Euclidean distance of 0 to the

origin. n
= [|6][3=>) 67
j=1

* L2 regularized objective function:

6 = argmax {ZlogP } —05292

6 =1

L1 Regularization (= lasso
regression)

. The sum of the (absolute value of the) weights

* Named after the L1 norm || #||;, = sum of the
absolute values of the Welghts = Manhattan

distance
— H9H1—Z\91!

* L1 regularized objective function:

6 = argmax {ZlogP } —(XZ]QJI

6 1=

Outline

Logistic Regression Examples
Learning Weights - SGD
Beyond Binary Classification
Implementation Tricks

Neural Networks

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

1.0 -

0.8 -

0.2

0.0

Could we train Logistic Regression
on these two training sets?

Training Logistic Regression on
these two training sets

Predicting with Logistic
Regression

Given x = [X1, X2, X3, ..., Xj]

Learn weights B = [B1, B2, B3, - Bj]
Compute a dot product x * f8

Dot product is a linear combination

We need to add some non-linearity

Predicting with Logistic
Regression

Is sigmoid enough? Does adding sigmoid allows us to
model non-linearly separable data?

https://playground.tensorflow.org/

