

Announcements

- Reading 03 released Monday
- Due Monday 02/13
- HW03 due Wednesday 02/15 (tonight)
- Reading 04
- Due Monday 02/20 - Dictionary Methods
- HWO4
- Due next Friday
- Will be released later today
- Reading 05 - will be released later this week
- Due Monday 02/27-CTA/TADA/CSS papers using Word Embeddings
- Office hours:
- Thursday 3-4:45pm

Prediction Outline

- Linear Regression
- Logistic Regression
- Learning weights - SGD (today)
- Neural Networks (might start today)
- Feed Forward Networks
- Word2Vec
- Recurrent Neural Networks
- LSTMs
- Transformers
- Attention
- BERT

Outline

Logistic Regression Examples

Learning Weights - SGD

Beyond Binary Classification

Implementation Tricks

Neural Networks

Idea of logistic regression

- We'll compute $w \cdot x+b$
- And then we'll pass it through the sigmoid function:

$$
\sigma(w \cdot x+b)
$$

- And we'll just treat it as a probability

Making probabilities with sigmoid

$$
P(y=1)=\sigma(w \cdot x+b)
$$

$$
=\frac{1}{1+\exp (-(w \cdot x+b))}
$$

$$
P(y=0)=1-\sigma(w \cdot x+b)
$$

$$
=1-\frac{1}{1+\exp (-(w \cdot x+b))}
$$

$$
=\frac{\exp (-(w \cdot x+b))}{1+\exp (-(w \cdot x+b))}
$$

Turning a probability into a classifier

$$
\hat{y}=\left\{\begin{array}{l}
1 \text { if } P(y=1 \mid x)>0.5 \\
0 \text { otherwise }
\end{array}\right.
$$

0.5 here is called the decision boundary

The probabilistic classifier

$$
P(y=1)=\sigma(w \cdot x+b)
$$

Turning a probability into a classifier

$\hat{y}= \begin{cases}1 \text { if } P(y=1 \mid x)>0.5 & \text { if } \mathrm{w} \cdot \mathrm{x}+\mathrm{b}>0 \\ 0 \text { otherwise } & \text { if } \mathrm{w} \cdot \mathrm{x}+\mathrm{b} \leq 0\end{cases}$

Examples

Feature	Coefficient	Weight	Example 1: Empty Document $X=\{ \}$	
bias	β_{0}	0.1		
"viagra"	β_{1}	2.0		
"mother"	β_{2}	-1.0		1
"work"	β_{3}	-0.5		
"nigeria"	β_{4}	3.0	$P(Y=0)=0.48$	

Bias β_{0} represents the class priors

Examples

Feature	Coefficient	Weight	Example 2:	
bias	β_{0}	0.1	$X=\{$ Mother, Nigeria $\}$	
"viagra"	β_{1}	2.0		
"mother"	β_{2}	-1.0		
"work"	β_{3}	-0.5		$=0.11$
"nigeria"	β_{4}	3.0	1	

Examples

Feature	Coefficient	Weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

Example 3:

$X=\{$ Mother, Work, Nigeria, Mother $\}$

$$
\begin{aligned}
& P(Y=0)=\frac{1}{1+\exp (0.1-1.0+2.0+3.0-1.0)}=0.60 \\
& P(Y=1)=\frac{\exp (0.1-1.0+2.0+3.0-1.0)}{1+\exp (0.1-1.0+2.0+3.0-1.0)}=0.30
\end{aligned}
$$

Logistic Regression

- Given a set of weights, β, compute conditional likelihood $P(y \mid \beta, x)$
- Find the weights that maximize the conditional likelihood on training data
- Intuition: higher weights implies corresponding feature is strongly indicative of the class for the observation

Outline

Logistic Regression Examples

Learning Weights - SGD

Beyond Binary Classification

Implementation Tricks

Feedforward Networks

Process Learning Weights

1. Randomly initialize weights
2. Make predictions \hat{y}
3. Quantify how close \hat{y} and y are We call this the distance aka Loss function
4. Update weights accordingly
aka Optimization
5. Repeat 2-4

Process Learning Weights

1. Randomly initialize weights
2. Make predictions \hat{y}
3. Quantify how close \hat{y} and y are We call this the distance aka Loss function
4. Update weights accordingly
aka Optimization
5. Repeat 2-4

Distance between \hat{y} and y

We want to know how far is the classifier output:

$$
\hat{y}=\sigma(w \cdot x+b)
$$

from the true output:

$$
\text { y [= either } 0 \text { or } 1]
$$

We'll call this difference our loss:
$L(\hat{y}, y)=$ how much \hat{y} differs from the true y $L(\hat{y}, y)$ is a loss function

Process Learning Weights

1. Randomly initialize weights
2. Make predictions \hat{y}
3. Quantify how close \hat{y} and y are We call this the distance aka Loss function
4. Update weights accordingly
aka Optimization
5. Repeat 2-4

hts that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

Find weights that minimize the loss

How to update the weights

1. Find the direction of the derivative of the loss function aka gradient of the loss
2. Move the weight in that direction
3. Then make a prediction on a new $x_{\{i\}}, y_{\{i\}}$ pair, and repeat 1 and 2
4. Repeat this for every example in our training set

Loss function properties

Moving to 2 weights

Process Learning Weights

1. Randomly initialize weights
2. Make predictions \hat{y}

Details!

3. Quantify how close \hat{y} and y are We call this the distance aka Loss function
4. Update weights accordingly
aka Optimization
5. Repeat 2-4

Loss function

Log likelihood

This probability is the likelihood of the label given the data

$$
\mathcal{L}(\hat{y}, y)=\log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)
$$

Computing this loss across our entire dataset

$$
\mathcal{L}(\widehat{\boldsymbol{y}}, \boldsymbol{y})=\sum_{i}^{n} \log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)
$$

Recall

$$
P(y=1)=
$$

$$
\sigma\left(\sum_{j}^{p} \beta_{j\}} * x_{j j}\right)
$$

$$
P(y=0)=
$$

$$
1-\sigma\left(\sum_{j}^{p} \beta_{\{j\}} * x_{\{j\}}\right)
$$

Loss function

$$
\begin{gathered}
P(y=1)= \\
\sigma(\boldsymbol{\beta} * \boldsymbol{x}) \\
P(y=0)= \\
1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})
\end{gathered}
$$

Recall that $\sigma(\ldots)$ is used to create probabilities

$$
\begin{array}{cl}
\mathcal{L}(\hat{y}, y)=\log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)= & \\
\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\
\log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0
\end{array}
$$

Loss function - examples

$\mathcal{L}(\hat{y}, y)=$

$$
\begin{array}{ll}
\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\
\log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0
\end{array}
$$

Gold label (y) Predicted $(\hat{y}) \quad \mathcal{L}(\hat{y}, y)$

Loss function - examples

$\mathcal{L}(\hat{y}, y)=$

$$
\begin{array}{ll}
\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\
\log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0
\end{array}
$$

Gold label (\boldsymbol{y}) Predicted $(\hat{y}) \quad \mathcal{L}(\hat{y}, y)$
1
0.2
0
0.01
0
0.75
1
0.75

Loss function - examples
$\mathcal{L}(\hat{y}, y)=$

$$
\begin{array}{ll}
\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\
\log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0
\end{array}
$$

Gold label (\boldsymbol{y}) Predicted $(\hat{y}) \quad \mathcal{L}(\hat{y}, y)$
1
0.2
0.8
0
0.01
.99
0
0.75
0.75
1
0.75
0.25

Examples

Feature	Coefficient	Weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

Example 2:
 $X=\{$ Mother, Nigeria $\}$

$P(Y=0)=0.11$
$P(Y=1)=0.88$

What's $\mathcal{L}(\hat{y}, y)$ if $y=0$?
What's $\mathcal{L}(\hat{y}, y)$ if $\mathrm{y}=1$?

Loss function

$$
\begin{array}{ll}
\mathcal{L}(\hat{y}, y)= & \text { if } \mathrm{y}=1 \\
& \log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) \\
& \log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x}))
\end{array} \quad \text { if } \mathrm{y}=0.2 \text {. }
$$

What about across our entire dataset?
$\mathcal{L}(\widehat{y}, y)=$

$$
=\sum_{i}^{n} \log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)
$$

$$
=\sum_{i}^{n} \begin{cases}\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\ \log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0\end{cases}
$$

Loss function

$\mathcal{L}(\hat{y}, y)=$

$$
=\sum_{i}^{n} \log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)
$$

$$
=\sum_{i}^{n} \begin{cases}\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\ \log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0\end{cases}
$$

Process Learning Weights

1. Randomly initialize weights
2. Make predictions \hat{y}
3. Quantify how close \hat{y} and y are We call this the distance aka Loss function
4. Update weights accordingly
aka Optimization
5. Repeat 2-4

> Details!

Loss function

$\mathcal{L}(\widehat{y}, \boldsymbol{y})=$

$$
=\sum_{i}^{n} \log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)
$$

$$
=\sum_{i}^{n} \begin{cases}\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\ \log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0\end{cases}
$$

How do we update the weights?

1. Compute the derivative/gradient of \mathcal{L}
2. Update the weights based on the direction of the derivative/gradient

Computing the gradient of \mathcal{L}

$\mathcal{L}(\hat{y}, y)=$

$$
=\sum_{i}^{n} \log \left(p\left(y_{\{i\}} \mid x_{\{i\}}, \beta\right)\right)
$$

What variable in the loss function can we update?
Answer: β

When we compute $\nabla \mathcal{L}$, what variable should use to take the derivative?
Answer: β take the derivate

Computing the gradient of \mathcal{L}

$\nabla \mathcal{L}=\frac{d}{d \beta} L(\sigma(\beta * x), y)$

How do we take the derivative of this?

Chain rule!

Chain Rule

If y is the result of

$$
y=f(g(x))
$$

Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d f}{d g} \frac{d g}{d x} \\
& \quad=f^{\prime}[g(x)] * g^{\prime}(x)
\end{aligned}
$$

Example:

$$
\frac{d y}{d x}=
$$

$$
\begin{aligned}
& y=\left(x^{2}+1\right)^{3} \\
& =3\left(x^{2}+1\right)^{2} * 2 x \\
& =6 x\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Computing the gradient of \mathcal{L}

$\nabla \mathcal{L}=\frac{d}{d \beta} L(\sigma(\beta * x), y)$

What are our two functions here that depend on β ?

1. σ
2. $\beta * x$

Computing the gradient of \mathcal{L}

$\nabla \mathcal{L}=\frac{d}{d \beta} L(\sigma(\beta * x), y)$

What are our two functions here that depend on β ?

1. $\mathrm{f}=\sigma$
2. $\mathrm{g}=\beta * x$

Computing the gradient of \mathcal{L}

$$
\nabla \mathcal{L}=\frac{d}{d \beta} L(\sigma(\beta * x), y)
$$

What are our two functions here that depend on β ?

1. $\mathrm{f}=\sigma$
2. $\mathrm{g}=\beta * x$

$$
\begin{aligned}
\nabla \mathcal{L} & =f^{\prime}[g(x)] * g^{\prime}(x) \\
& =\sigma^{\prime}(\beta * x) g^{\prime}(x)
\end{aligned}
$$

Computing the gradient of \mathcal{L}

1. $\mathrm{f}=\sigma$
2. $\mathrm{g}=\beta * x$

$$
\begin{aligned}
\nabla \mathcal{L} & =f^{\prime}[g(x)] * g^{\prime}(x) \\
& =\sigma^{\prime}(\beta * x) g^{\prime}(x)
\end{aligned}
$$

What's $\frac{d \sigma}{d \beta}$ and $\frac{d}{d \beta} \beta * x$?

$$
\frac{d}{d \beta} \beta * x=x
$$

$$
\frac{d \sigma}{d \beta}=\sigma *(1-\sigma)
$$

$$
\begin{aligned}
\frac{d}{d x} \sigma(x) & =\frac{d}{d x}\left[\frac{1}{1+e^{-x}}\right] \\
& =\frac{(0)\left(1+e^{-x}\right)-\left(-e^{-x}\right)(1)}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}
\end{aligned}
$$

Derivative of σ
https://hausetutorials.netlify.app/posts/2019-12-01-neural-networks-deriving-the-sigmoidderivative/

Computing the gradient of \mathcal{L}

$$
\begin{aligned}
\nabla \mathcal{L} & =f^{\prime}[g(x)] * g^{\prime}(x) \\
& =\sigma^{\prime}(\beta * x) g^{\prime}(x) \\
& =\sigma(\beta * x)(1-\sigma(\beta * x)) x
\end{aligned}
$$

But remember, what's \mathcal{L} ?

$$
\sum_{i}^{n} \begin{cases}\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\ \log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0\end{cases}
$$

So, we need to apply the chain rule again

Computing the gradient of \mathcal{L}

So, we need to apply the chain rule again.
Facts:

1. $\frac{d}{d x} \log (\mathrm{x})=\frac{1}{x}$
2. $\quad \sum_{i}^{n} \begin{cases}\log (\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=1 \\ \log (1-\sigma(\boldsymbol{\beta} * \boldsymbol{x})) & \text { if } \mathrm{y}=0\end{cases}$
3. $\nabla \mathcal{L}=f^{\prime}[g(x)] * g^{\prime}(x)$

Computing the gradient of \mathcal{L}

When $\mathrm{y}=1$
When $\mathrm{y}=0$

$$
\nabla \mathcal{L}=\log ^{\prime}(\sigma) * \sigma^{\prime}
$$

$$
\begin{array}{ll}
=\frac{1}{\sigma} *(\sigma *(1-\sigma) x) & =\frac{1}{1-\sigma}(-(\sigma *(1-\sigma) x)) \\
=(1-\sigma) x & =\frac{-(\sigma *(1-\sigma) x)}{1-\sigma} \\
& =-\sigma x
\end{array}
$$

Computing the gradient of \mathcal{L}

$\nabla \mathcal{L}=$

$$
\sum_{i}^{n}\left\{\begin{array}{l}
(1-\sigma) x \\
-\sigma x
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } \mathrm{y}=1 \\
& \text { if } \mathrm{y}=0
\end{aligned}
$$

$\nabla \mathcal{L}=\left\{\begin{array}{l}(1-\sigma) x \\ -\sigma x\end{array}\right.$

$$
\begin{aligned}
& \text { if } \mathrm{y}=1 \\
& \text { if } \mathrm{y}=0
\end{aligned}
$$

Putting it into one equation:
$\nabla \mathcal{L}=(\mathrm{y}-\sigma) x$

Computing the gradient of \mathcal{L}

$$
\nabla \mathcal{L}=(\mathrm{y}-\sigma) x
$$

$$
\begin{aligned}
\frac{d \mathcal{L}}{d \beta} & =(\mathrm{y}-\sigma) x \\
& =(\mathrm{y}-\sigma(\beta * x)) x \\
& =\left(\mathrm{y}-\frac{1}{1+e^{-(\beta * x)}}\right) x
\end{aligned}
$$

What if we have multiple β^{\prime} 's?
Solution: partial derivatives!

Real gradients

- We have lots of weights/parameters
- For each parameter β_{i}, the gradient component i tells us the slope with respect to that variable.
- "How much would a small change in β_{i} influence the total loss function \mathcal{L} ?"
- We express the slope as a partial derivative ∂ of the loss $\partial \beta_{i}$
- The gradient is then defined as a vector of these partials.

Computing the gradient of \mathcal{L} partial derivatives

$\nabla_{\beta} \mathcal{L}=$

$$
\left[\begin{array}{c}
\frac{d \mathcal{L}}{d \beta_{0}} \\
\frac{d \mathcal{L}}{d \beta_{1}} \\
\cdots \\
\cdots \\
\frac{d \mathcal{L}}{d \beta_{j}}
\end{array}\right]
$$

What can we do after we computed the gradients?

Updating weights based on gradients
$\Delta \beta=\eta \nabla_{\beta} \mathcal{L}(\beta)$

Update each individual weight:
$\beta_{i} \leftarrow \beta_{i}-\eta \frac{d \mathcal{L}(\beta)}{d \beta_{i}}$

If we want to perform gradient ascent, we ...
$\beta_{i} \leftarrow \beta_{i}+\eta \frac{d \mathcal{L}(\beta)}{d \beta_{i}}$

Find weights that minimize the loss

Updating weights based on gradients
$\Delta \beta=\eta \nabla_{\beta} \mathcal{L}(\beta)$

Update each individual weight:
$\beta_{i} \leftarrow \beta_{i}-\eta \frac{d \mathcal{L}(\beta)}{d \beta_{i}}$

If we want to perform gradient ascent, we ...
$\beta_{i} \leftarrow \beta_{i}+\eta \frac{d \mathcal{L}(\beta)}{d \beta_{i}}$

Step size

Process Learning Weights

1. Randomly initialize weights
2. Make predictions \hat{y}
3. Quantify how close \hat{y} and y are We call this the distance aka Loss function
4. Update weights accordingly
aka Optimization
5. Repeat 2-4

Stochastic Gradient Descent

1. Randomly initialize β_{i}
2. For every $\left\{x_{i}, y_{i}\right\}$ pair in our training set:

Compute the gradient of the loss

$$
\frac{d \mathcal{L}(\beta)}{d \beta_{i}}
$$

Update each weights based on the gradients

$$
\beta_{i} \leftarrow \beta_{i}-\eta \frac{d \mathcal{L}(\beta)}{d \beta_{i}}
$$

3. Repeat 2 until convergance (or max epochs)
4. return β_{i}

Hyperparameters

- Hyperparameters:
- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.
- The learning rate η is a hyperparameter
- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

SGD Example

Working through an example

- One step of gradient descent
- A mini-sentiment example, where the true $y=1$ (positive)
- Two features:

$$
\begin{array}{ll}
x_{1}=3 & \text { (count of positive lexicon words) } \\
x_{2}=2 & \text { (count of negative lexicon words) }
\end{array}
$$

Assume 3 parameters (2 weights and 1 bias) in Θ^{0} are zero:

$$
\begin{aligned}
& w_{1}=w_{2}=b=0 \\
& \eta=0.1
\end{aligned}
$$

Example of gradient descent

- Update step for update θ is:

$$
\begin{aligned}
& w_{1}=w_{2}=b=0 \\
& x_{1}=3 ; \quad x_{2}=2
\end{aligned}
$$

$$
\theta_{t+1}=\theta_{t}-\eta \nabla L(f(x ; \theta), y)
$$

$$
\text { where } \frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{j}}=[\sigma(w \cdot x+b)-y] x_{j}
$$

- Gradient vector has 3 dimensions:

$$
\nabla_{w, b}=\left[\begin{array}{c}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{2}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial b}
\end{array}\right]
$$

Example of gradient descent

- Update step for update θ is:

$$
\begin{aligned}
& w_{1}=w_{2}=b=0 \\
& x_{1}=3 ; x_{2}=2
\end{aligned}
$$

$$
\theta_{t+1}=\theta_{t}-\eta \nabla L(f(x ; \theta), y)
$$

$$
\text { where } \frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{j}}=[\sigma(w \cdot x+b)-y] x_{j}
$$

- Gradient vector has 3 dimensions:

$$
\nabla_{w, b}=\left[\begin{array}{c}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{2}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial b}
\end{array}\right]=[
$$

Example of gradient descent

- Update step for update θ is:

$$
\begin{aligned}
& w_{1}=w_{2}=b=0 \\
& x_{1}=3 ; x_{2}=2
\end{aligned}
$$

$$
\theta_{t+1}=\theta_{t}-\eta \nabla L(f(x ; \theta), y)
$$

$$
\text { where } \frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{j}}=[\sigma(w \cdot x+b)-y] x_{j}
$$

- Gradient vector has 3 dimensions:

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial_{1}(\hat{y}} \\
\frac{\partial \mathrm{CE},(\hat{y})}{} \mathrm{D}_{\mathrm{y}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]
$$

Example of gradient descent

- Update step for update θ is:

$$
\begin{aligned}
& w_{1}=w_{2}=b=0 \\
& x_{1}=3 ; x_{2}=2
\end{aligned}
$$

$$
\theta_{t+1}=\theta_{t}-\eta \nabla L(f(x ; \theta), y)
$$

$$
\text { where } \frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{j}}=[\sigma(w \cdot x+b)-y] x_{j}
$$

- Gradient vector has 3 dimensions:

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]=\left[\begin{array}{l}
(\sigma(0)-1) x_{1} \\
(\sigma(0)-1) x_{2} \\
\sigma(0)-1
\end{array}\right]=
$$

Example of gradient descent

- Update step for update θ is:

$$
\begin{aligned}
& w_{1}=w_{2}=b=0 \\
& x_{1}=3 ; x_{2}=2
\end{aligned}
$$

$$
\theta_{t+1}=\theta_{t}-\eta \nabla L(f(x ; \theta), y)
$$

$$
\text { where } \frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{j}}=[\sigma(w \cdot x+b)-y] x_{j}
$$

- Gradient vector has 3 dimensions:

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]=\left[\begin{array}{l}
(\sigma(0)-1) x_{1} \\
(\sigma(0)-1) x_{2} \\
\sigma(0)-1
\end{array}\right]=\left[\begin{array}{l}
-0.5 x_{1} \\
-0.5 x_{2} \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]
$$

Example of gradient descent

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial w_{2}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]=\left[\begin{array}{l}
(\sigma(0)-1) x_{1} \\
(\sigma(0)-1) x_{2} \\
\sigma(0)-1
\end{array}\right]=\left[\begin{array}{l}
-0.5 x_{1} \\
-0.5 x_{2} \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]
$$

Now that we have a gradient, we compute the new parameter vector θ^{1} by moving θ^{0} in the opposite direction from the gradient:

$$
\begin{aligned}
\theta_{t+1} & =\theta_{t}-\eta \nabla L(f(x ; \theta), y) \quad \eta=0.1 ; \\
\theta^{1} & =
\end{aligned}
$$

Example of gradient descent

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial w_{2}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]=\left[\begin{array}{l}
(\sigma(0)-1) x_{1} \\
(\sigma(0)-1) x_{2} \\
\sigma(0)-1
\end{array}\right]=\left[\begin{array}{l}
-0.5 x_{1} \\
-0.5 x_{2} \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]
$$

Now that we have a gradient, we compute the new parameter vector θ^{1} by moving θ^{0} in the opposite direction from the gradient:

$$
\begin{aligned}
\theta_{t+1} & =\theta_{t}-\eta \nabla L(f(x ; \theta), y) \\
\theta^{1} & =\left[\begin{array}{l}
w_{1} \\
w_{2} \\
b
\end{array}\right]-\eta\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]
\end{aligned}
$$

Example of gradient descent

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial w_{2}} \\
\frac{\left.\partial L_{\mathrm{CE}} \hat{y}, y\right)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]=\left[\begin{array}{l}
(\sigma(0)-1) x_{1} \\
(\sigma(0)-1) x_{2} \\
\sigma(0)-1
\end{array}\right]=\left[\begin{array}{l}
-0.5 x_{1} \\
-0.5 x_{2} \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]
$$

Now that we have a gradient, we compute the new parameter vector θ^{1} by moving θ^{0} in the opposite direction from the gradient:

$$
\begin{gathered}
\theta_{t+1}=\theta_{t}-\eta \nabla L(f(x ; \theta), y) \quad \eta=0.1 ; \\
\theta^{1}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
b
\end{array}\right]-\eta\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
.15 \\
.1 \\
.05
\end{array}\right]
\end{gathered}
$$

Example of gradient descent

$$
\nabla_{w, b}=\left[\begin{array}{l}
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{1}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial w_{2}} \\
\frac{\partial L_{\mathrm{CE}}(\hat{y}, y)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
(\sigma(w \cdot x+b)-y) x_{1} \\
(\sigma(w \cdot x+b)-y) x_{2} \\
\sigma(w \cdot x+b)-y
\end{array}\right]=\left[\begin{array}{l}
(\sigma(0)-1) x_{1} \\
(\sigma(0)-1) x_{2} \\
\sigma(0)-1
\end{array}\right]=\left[\begin{array}{l}
-0.5 x_{1} \\
-0.5 x_{2} \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]
$$

Now that we have a gradient, we compute the new parameter vector θ^{1} by moving θ^{0} in the opposite direction from the gradient:

$$
\begin{aligned}
\theta_{t+1} & =\theta_{t}-\eta \nabla L(f(x ; \theta), y) \quad \eta=0.1 ; \\
\theta^{1} & =\left[\begin{array}{l}
w_{1} \\
w_{2} \\
b
\end{array}\right]-\eta\left[\begin{array}{l}
-1.5 \\
-1.0 \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
.15 \\
.1 \\
.05
\end{array}\right]
\end{aligned}
$$

Note that enough negative examples would eventually make w_{2} negative

Outline

Logistic Regression Examples

Learning Weights - SGD

Beyond Binary Classification

Implementation Tricks

Neural Networks

Prediction: NLP/ML vs CTA/TADA

NLP/ML:

- Make prediction about unseen data
- Predict if a stock will go up or down based on social media posts

CTA/TADA/CSS:

- Learn something about different categories
- Are there different terms/concepts used to describe male vs female professors on course reviews

Outline

Logistic Regression Examples

Learning Weights - SGD

Beyond Binary Classification

Implementation Tricks

Neural Networks

Multinomial Logistic Regression aka softmax regression, multinomial logit

Softmax: a generalization of the sigmoid

- Takes a vector of k values
- think scores for each class
- Outputs a probability distribution
- each value in the range $[0,1]$
- all the values summing to 1
$\operatorname{softmax}\left(z_{i}\right)=\frac{\exp \left(z_{i}\right)}{\sum_{j=1}^{k} \exp \left(z_{j}\right)} \quad 1 \leq i \leq k$
$\operatorname{softmax}(\mathbf{z})=\left[\frac{\exp \left(z_{1}\right)}{\sum_{j=1}^{k} \exp \left(z_{j}\right)}, \frac{\exp \left(z_{2}\right)}{\sum_{j=1}^{k} \exp \left(z_{j}\right)}, \ldots, \frac{\exp \left(z_{3}\right)}{\sum_{j=1}^{k} \exp \left(z_{j}\right)}\right]$

Outline

Logistic Regression Examples

Learning Weights - SGD

Beyond Binary Classification

Implementation Tricks

Neural Networks

Mini-batch training

- Stochastic gradient descent chooses a single random example at a time.
- That can result in choppy movements
- More common to compute gradient over batches of training instances.
- Batch training: entire dataset
- Mini-batch training: m examples (512, or 1024)

Overfitting

- A model that perfectly match the training data has a problem.
- It will also overfit to the data, modeling noise
- A random word that perfectly predicts y (it happens to only occur in one class) will get a very high weight.
- Failing to generalize to a test set without this word.
- A good model should be able to generalize

Overfitting

Useful or harmless features

$+$
 - This movie drew me in, and it'll do the same to you.

$$
\begin{aligned}
& \text { X1 }=\text { "this" } \\
& \text { X2 }=\text { "movie } \\
& \text { X3 = "hated" }
\end{aligned}
$$

X4 = "drew me in"

4gram features that just
"memorize" training set and might cause problems

$$
\begin{aligned}
& \text { X5 = "the same to you" } \\
& \text { X7 = "tell you how much" }
\end{aligned}
$$

Overfitting

- 4-gram model on tiny data will just memorize the data
- 100% accuracy on the training set
- But it will be surprised by the novel 4-grams in the test data
- Low accuracy on test set
- Models that are too powerful can overfit the data
- Fitting the details of the training data so exactly that the model doesn't generalize well to the test set
- How to avoid overfitting?
- Regularization in logistic regression
- Dropout in neural networks

Regularization

- A solution for overfitting
- Add a regularization term $R(\theta)$ to the loss function (for now written as maximizing logprob rather than minimizing loss)

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log P\left(y^{(i)} \mid x^{(i)}\right)-\alpha R(\theta)
$$

- Idea: choose an $R(\theta)$ that penalizes large weights
- fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights

L2 Regularization (= ridge regression)

- The sum of the squares of the weights
- The name is because this is the (square of the) $\mathbf{L 2}$ norm $\|\theta\|_{2}$, = Euclidean distance of θ to the origin.

$$
R(\theta)=\|\theta\|_{2}^{2}=\sum_{j=1}^{n} \theta_{j}^{2}
$$

- L2 regularized objective function:

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}}\left[\sum_{i=1}^{m} \log P\left(y^{(i)} \mid x^{(i)}\right)\right]-\alpha \sum_{j=1}^{n} \theta_{j}^{2}
$$

L1 Regularization (= lasso regression)

The sum of the (absolute value of the) weights

- Named after the L1 norm $\|W\|_{1}$, = sum of the absolute values of the weights, = Manhattan distance

$$
R(\theta)=\|\theta\|_{1}=\sum_{i=1}^{n}\left|\theta_{i}\right|
$$

- L1 regularized objective function:

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}}\left[\sum_{1=i}^{m} \log P\left(y^{(i)} \mid x^{(i)}\right)\right]-\alpha \sum_{j=1}^{n}\left|\theta_{j}\right|
$$

Outline

Logistic Regression Examples

Learning Weights - SGD

Beyond Binary Classification

Implementation Tricks

Neural Networks

Logistic Regression

Could we train Logistic Regression on these two training sets?

Training Logistic Regression on these two training sets

Predicting with Logistic Regression

Given $\boldsymbol{x}=\left[\begin{array}{lll}x_{1}, & x_{2}, & x_{3}, \ldots, x_{j}\end{array}\right]$

Learn weights $\boldsymbol{\beta}=\left[\begin{array}{lll}\beta_{1}, & \beta_{2}, & \beta_{3}, \ldots, \beta_{j}\end{array}\right]$

Compute a dot product $\boldsymbol{x} * \boldsymbol{\beta}$

Dot product is a linear combination
We need to add some non-linearity

Predicting with Logistic Regression

Is sigmoid enough? Does adding sigmoid allows us to model non-linearly separable data?
https://playground.tensorflow.org/

