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Announcements
• Reading 03 released Monday

• Due Monday 02/13

• HW03 due Wednesday 02/15 (tonight)

• Reading 04
• Due Monday 02/20 – Dictionary Methods

• HW04
• Due next Friday
• Will be released later today

• Reading 05 – will be released later this week
• Due Monday 02/27 - CTA/TADA/CSS papers using Word Embeddings

• Office hours:
• Thursday 3-4:45pm



Prediction Outline

• Linear Regression
• Logistic Regression
• Learning weights – SGD (today)
• Neural Networks (might start today)
• Feed Forward Networks

• Word2Vec
• Recurrent Neural Networks

• LSTMs
• Transformers

• Attention
• BERT



Outline

Logistic Regression Examples

Learning Weights - SGD 

Beyond Binary Classification

Implementation Tricks

Neural Networks



Idea of logistic regression

•We’ll compute w∙x+b
•And then we’ll pass it through the 

sigmoid function:
σ(w∙x+b)

•And we'll just treat it as a probability



Making probabilities with sigmoids

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary
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Turning a probability into a classifier
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

0.5 here is called the decision boundary



The probabilistic classifier
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is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

wx + b
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:
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Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

P(y=1)



Turning a probability into a classifier
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Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
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if w∙x+b > 0
if w∙x+b ≤ 0



Examples

Feature Coefficient Weight

bias 𝛽! 0.1

“viagra” 𝛽" 2.0

“mother” 𝛽# -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0 𝑃 𝑌 = 0 =
1

1 + exp(0.1)

𝑃 𝑌 = 1 =
exp(0.1)

1 + exp(0.1)

Bias 𝛽" represents the class priors

Example 1: Empty Document
𝑋 = { }

= 0.48

= 0.52



Examples
Feature Coefficient Weight

bias 𝛽! 0.1

“viagra” 𝛽" 2.0

“mother” 𝛽# -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

𝑃 𝑌 = 0 =
1

1 + exp(0.1 − 1.0 + 3.0)

𝑃 𝑌 = 1 =
exp(0.1 − 1.0 + 3.0)

1 + exp(0.1 − 1.0 + 3.0)

Example 2:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎}

= 0.11

= 0.88



Examples
Feature Coefficient Weight

bias 𝛽! 0.1

“viagra” 𝛽" 2.0

“mother” 𝛽# -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

𝑃 𝑌 = 0 =
1

1 + exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

𝑃 𝑌 = 1 =
exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

1 + exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

Example 3:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟,𝑊𝑜𝑟𝑘, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎,𝑀𝑜𝑡ℎ𝑒𝑟}

= 0.60

= 0.30



Logistic Regression

• Given a set of weights, 𝛽, compute conditional 
likelihood 𝑃 𝑦 𝛽, 𝑥)

• Find the weights that maximize the conditional 
likelihood on training data

• Intuition: higher weights implies corresponding 
feature is strongly indicative of the class for the 
observation



Outline

Logistic Regression Examples

Learning Weights - SGD 

Beyond Binary Classification

Implementation Tricks

Feedforward Networks



Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization
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Distance between !𝑦 and y 

We want to know how far is the classifier output:
!𝑦 = σ(w·x+b)

from the true output:
y        [= either 0 or 1]

We'll call this difference our loss:
L( !𝑦 ,y) = how much !𝑦 differs from the true y
L( !𝑦 ,y) is a loss function



Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization



Find weights that minimize the loss



Find weights that minimize the loss



Find weights that minimize the loss



Find weights that minimize the loss



Find weights that minimize the loss



Find weights that minimize the loss



Find weights that minimize the loss



Find weights that minimize the loss
How far down should we move
the weight?

This is called the step-size or 
learning-rate



Find weights that minimize the loss



Find weights that minimize the loss



How to update the weights

1. Find the direction of the derivative of the loss function
aka gradient of the loss

2. Move the weight in that direction

3. Then make a prediction on a new 𝑥 ! , 𝑦 ! pair, and repeat 
1 and 2

4. Repeat this for every example in our training set



Loss function properties

Differentiable

Have a local minimum 
convex function



Moving to 2 weights
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)



Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization

Details!



Loss function

Log likelihood

ℒ (𝑦, 𝑦 = log(𝑝 𝑦 ! 𝑥 ! , 𝛽))

Computing this loss across our entire dataset

ℒ(/𝒚, 𝒚) = 1
!

"

log(𝑝 𝑦 ! 𝑥 ! , 𝛽))

This probability is the likelihood 
of the label given the data



Recall

𝑃 𝑦 = 1 =

𝜎 ∑#
$ 𝛽 # ∗ 𝑥 #

𝑃 𝑦 = 0 =

1 − 𝜎 ∑#
$ 𝛽 # ∗ 𝑥 #



Loss function

𝑃 𝑦 = 1 =
𝜎 𝜷 ∗ 𝒙

𝑃 𝑦 = 0 =
1 − 𝜎 𝜷 ∗ 𝒙

ℒ (𝑦, 𝑦 = log(𝑝 𝑦 ! 𝑥 ! , 𝛽)) =
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

Recall that 𝜎(… ) is used to 
create probabilities



Loss function - examples
ℒ (𝑦, 𝑦 =

log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

Gold label (𝒚) Predicted ("𝒚) ℒ("𝒚, 𝒚)



Loss function - examples
ℒ (𝑦, 𝑦 =

log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

Gold label (𝒚) Predicted ("𝒚) ℒ("𝒚, 𝒚)
1 0.2
0 0.01
0 0.75
1 0.75



Loss function - examples
ℒ (𝑦, 𝑦 =

log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

Gold label (𝒚) Predicted ("𝒚) ℒ("𝒚, 𝒚)
1 0.2 0.8
0 0.01 .99
0 0.75 0.75
1 0.75 0.25



Examples
Feature Coefficient Weight

bias 𝛽! 0.1

“viagra” 𝛽" 2.0

“mother” 𝛽# -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

𝑃 𝑌 = 0 = 0.11
𝑃 𝑌 = 1 = 0.88

What’s ℒ A𝑦, 𝑦 if y = 0? 
What’s ℒ A𝑦, 𝑦 if y = 1? 

Example 2:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎}



Loss function

ℒ !𝑦, 𝑦 =
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

What about across our entire dataset?

ℒ 2𝒚, 𝒚 =
= ∑!" log(𝑝 𝑦 ! 𝑥 ! , 𝛽))

= ∑!" 7
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0



Loss function 

ℒ /𝒚, 𝒚 =
= ∑!" log(𝑝 𝑦 ! 𝑥 ! , 𝛽))

= ∑!" :
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0



Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization

Details!



Loss function 

ℒ /𝒚, 𝒚 =
= ∑!" log(𝑝 𝑦 ! 𝑥 ! , 𝛽))

= ∑!" :
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

How do we update the weights?
1. Compute the derivative/gradient of ℒ
2. Update the weights based on the direction of the 

derivative/gradient



Computing the gradient of ℒ

ℒ /𝒚, 𝒚 =
= ∑!" log(𝑝 𝑦 ! 𝑥 ! , 𝛽))

What variable in the loss function can we update?
Answer: 𝛽

When we compute ∇ℒ, what variable should use to 
take the derivative? 
Answer: 𝛽 take the derivate 



Computing the gradient of ℒ

∇ℒ =
𝑑
𝑑𝛽

𝐿(𝜎 𝛽 ∗ 𝑥 , 𝑦)

How do we take the derivative of this?

Chain rule!



Chain Rule

If		y	is	the	result	of	
𝑦 = 𝑓 𝑔 𝑥

Then,
𝑑𝑦
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

= 𝑓4 𝑔 𝑥 ∗ 𝑔′ 𝑥
Example:

𝑦 = (𝑥5 + 1)6
78
79 =

= 3(𝑥5 + 1)5 ∗ 2𝑥
= 6𝑥(𝑥5 + 1)5



Computing the gradient of ℒ

∇ℒ =
𝑑
𝑑𝛽

𝐿(𝜎 𝛽 ∗ 𝑥 , 𝑦)

What are our two functions here that depend on 𝛽?
1. σ
2. 𝛽 ∗ 𝑥



Computing the gradient of ℒ

∇ℒ =
𝑑
𝑑𝛽

𝐿(𝜎 𝛽 ∗ 𝑥 , 𝑦)

What are our two functions here that depend on 𝛽?
1. f = σ
2. g = 𝛽 ∗ 𝑥



Computing the gradient of ℒ

∇ℒ =
𝑑
𝑑𝛽

𝐿(𝜎 𝛽 ∗ 𝑥 , 𝑦)

What are our two functions here that depend on 𝛽?
1. f = σ
2. g = 𝛽 ∗ 𝑥

∇ℒ = 𝑓% 𝑔 𝑥 ∗ 𝑔′ 𝑥
= 𝜎% 𝛽 ∗ 𝑥 𝑔′ 𝑥



Computing the gradient of ℒ

1. f = σ
2. g = 𝛽 ∗ 𝑥

∇ℒ = 𝑓% 𝑔 𝑥 ∗ 𝑔′ 𝑥
= 𝜎% 𝛽 ∗ 𝑥 𝑔′ 𝑥

What’s &'
&(

and &
&(
𝛽 ∗ 𝑥?

𝑑
𝑑𝛽

𝛽 ∗ 𝑥 = 𝑥
&'
&(
= 𝜎 ∗ 1 − 𝜎



Derivative 
of 𝜎

https://hausetutorials.netlify.app/posts/2019-
12-01-neural-networks-deriving-the-sigmoid-
derivative/



Computing the gradient of ℒ

∇ℒ = 𝑓% 𝑔 𝑥 ∗ 𝑔′ 𝑥
= 𝜎% 𝛽 ∗ 𝑥 𝑔′ 𝑥
= 𝜎(𝛽 ∗ 𝑥) 1 − 𝜎(𝛽 ∗ 𝑥 )𝑥

But remember, what’s ℒ?

∑!" :
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

So, we need to apply the chain rule again



Computing the gradient of ℒ
So, we need to apply the chain rule again. 
Facts:

1. !
!"
log x = #

"

2. ∑$% +
log(𝜎 𝜷 ∗ 𝒙) if y = 1
log(1 − 𝜎 𝜷 ∗ 𝒙) if y = 0

3. ∇ℒ = 𝑓& 𝑔 𝑥 ∗ 𝑔′ 𝑥



When	y	=	1

∇ℒ = 𝑙𝑜𝑔% 𝜎 ∗ 𝜎′

=
1
𝜎
∗ 𝜎 ∗ 1 − 𝜎 𝑥

= 1 − 𝜎 𝑥

When	y	=	0

∇ℒ = 𝑙𝑜𝑔% 1 − 𝜎 ∗ − 𝜎′

= )
) * '

(− 𝜎 ∗ 1 − 𝜎 𝑥 )

= * ' ∗ ) *' ,
) * '

= −𝜎𝑥

Computing the gradient of ℒ



Computing the gradient of ℒ

∇ℒ =

∑!" :
1 − 𝜎 𝑥 if y = 1
−𝜎𝑥 if y = 0

∇ℒ = : 1 − 𝜎 𝑥 if y = 1
−𝜎𝑥 if y = 0

Putting it into one equation:
∇ℒ = y − 𝜎 𝑥



Computing the gradient of ℒ

∇ℒ = y − 𝜎 𝑥

𝑑ℒ
𝑑𝛽

= y − 𝜎 𝑥

= y − 𝜎 𝛽 ∗ 𝑥 𝑥

= y − )
)- .!(#∗%)

𝑥

What if we have multiple 𝛽’s?
Solution: partial derivatives!



Real gradients

• We have lots of weights/parameters
• For each parameter 𝛽!, the gradient component i

tells us the slope with respect to that variable. 
• “How much would a small change in 𝛽: influence the 

total loss function ℒ?” 
• We express the slope as a partial derivative ∂ of the loss 

∂ 𝛽:
• The gradient is then defined as a vector of these 

partials. 



Computing the gradient of ℒ
partial derivatives
∇(ℒ =

&ℒ
&('
&ℒ
&((…
…
&ℒ
&()

What can we do after we computed the gradients?



Updating weights based on 
gradients
Δ𝛽 = η∇(ℒ 𝛽

Update each individual weight:

𝛽! ← 𝛽! − η &ℒ (
&(*

If we want to perform gradient ascent, we …

𝛽! ← 𝛽! + η
𝑑ℒ 𝛽
𝑑𝛽!



Find weights that minimize the loss



Updating weights based on 
gradients
Δ𝛽 = η∇(ℒ 𝛽

Update each individual weight:

𝛽! ← 𝛽! − η &ℒ (
&(*

If we want to perform gradient ascent, we …

𝛽! ← 𝛽! + η
𝑑ℒ 𝛽
𝑑𝛽! Step size



Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization



Stochastic Gradient Descent

1. Randomly initialize 𝛽!
2. For every 𝑥! , 𝑦! pair in our training set:

Compute the gradient of the loss 
#ℒ %
#%'

Update each weights based on the gradients
𝛽! ← 𝛽! − η #ℒ %

#%'

3. Repeat 2 until convergance (or max epochs)
4. return 𝛽!



Hyperparameters

• Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from supervision 

(like regular parameters), they are chosen by algorithm 
designer.

• The learning rate η is a hyperparameter
• too high: the learner will take big steps and overshoot
• too low: the learner will take too long



SGD Example



Working through an example
• One step of gradient descent
• A mini-sentiment example, where the true y=1 

(positive)
• Two features:

x1 = 3    (count of positive lexicon words) 
x2 = 2    (count of negative lexicon words) 

Assume 3 parameters (2 weights and 1 bias) in Θ0 are zero:
w1 = w2 = b  = 0 
η = 0.1 



Example of gradient descent

• Update step for update θ is:

• where

• Gradient vector has 3 dimensions:
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2   
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.



Example of gradient descent

• Update step for update θ is:

• where

• Gradient vector has 3 dimensions:
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2
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�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2   
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.



Example of gradient descent

• Update step for update θ is:

• where

• Gradient vector has 3 dimensions:
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)
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b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2   
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.



Example of gradient descent

• Update step for update θ is:

• where

• Gradient vector has 3 dimensions:
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2   
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.



Example of gradient descent

• Update step for update θ is:

• where

• Gradient vector has 3 dimensions:
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)
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Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b  = 0;    
x1 = 3;   x2 = 2   
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)
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Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)
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rate h is 0.1:

w1 = w2 = b = 0
h = 0.1
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q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector θ1 by moving θ0 in the 
opposite direction from the gradient: 
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector θ1 by moving θ0 in the 
opposite direction from the gradient: 
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)
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Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.
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Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L( f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,
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Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector θ1 by moving θ0 in the 
opposite direction from the gradient: 

Note that enough negative examples would eventually make w2 negative
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Prediction: NLP/ML vs CTA/TADA

NLP/ML:

• Make prediction about  
unseen data
• Predict if a stock will go 

up or down based on 
social media posts

CTA/TADA/CSS:

• Learn something about 
different categories
• Are there different 

terms/concepts used to 
describe male vs female 
professors on course 
reviews
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Multinomial Logistic Regression
aka softmax regression, multinomial logit
Softmax: a generalization of the sigmoid 
• Takes a vector of k values 

• think scores for each class
• Outputs a probability distribution

• each value in the range [0,1]
• all the values summing to 1

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧: =
exp(𝑧:)

∑;<=
> exp(𝑧;)

1 ≤ 𝑖 ≤ 𝑘

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 =
exp(𝑧=)

∑;<=> exp(𝑧;)
,

exp(𝑧5)
∑;<=> exp(𝑧;)

, … ,
exp(𝑧6)

∑;<=> exp(𝑧;)
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Mini-batch training

• Stochastic gradient descent chooses a single 
random example at a time.
• That can result in choppy movements
• More common to compute gradient over batches 

of training instances.
• Batch training: entire dataset
• Mini-batch training: m examples (512, or 1024)



Overfitting

• A model that perfectly match the training data has 
a problem.
• It will also overfit to the data, modeling noise 
• A random word that perfectly predicts y (it happens to 

only occur in one class) will get a very high weight. 
• Failing to generalize to a test set without this word. 

• A good model should be able to generalize



Overfitting

• This movie drew me in, and 
it'll do the same to you.

84

X1 = "this"
X2 = "movie
X3 = "hated"

I can't tell you how much I hated this movie. It 
sucked.

X5 = "the same to you"
X7 = "tell you how much"

X4 = "drew me in"

+

-

Useful or harmless features

4gram features that just 
"memorize" training set and might 
cause problems



Overfitting
• 4-gram model on tiny data will just memorize the data
• 100% accuracy on the training set

• But it will be surprised by the novel 4-grams in the test data
• Low accuracy on test set

• Models that are too powerful can overfit the data
• Fitting the details of the training data so exactly that the 

model doesn't generalize well to the test set
• How to avoid overfitting?

• Regularization in logistic regression 
• Dropout in neural networks

85



Regularization

• A solution for overfitting
• Add a regularization term R(θ) to the loss function 

(for now written as maximizing logprob rather than minimizing loss) 

• Idea: choose an R(θ) that penalizes large weights
• fitting the data well with lots of big weights not as good 

as fitting the data a little less well, with small weights
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are



L2 Regularization (= ridge 
regression)

• The sum of the squares of the weights
• The name is because this is the (square of the)        

L2 norm ||θ||2, = Euclidean distance of θ to the 
origin.

• L2 regularized objective function:
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are



L1 Regularization (= lasso 
regression)

• The sum of the (absolute value of the) weights
• Named after the L1 norm ||W||1, = sum of the 

absolute values of the weights, = Manhattan 
distance

• L1 regularized objective function:
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
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Could we train Logistic Regression 
on these two training sets?



Training Logistic Regression on 
these two training sets



Predicting with Logistic 
Regression
Given 𝒙 = 𝑥), 𝑥0, 𝑥1, … , 𝑥#

Learn weights 𝜷 = 𝛽), 𝛽0, 𝛽1, … , 𝛽#

Compute a dot product 𝒙 ∗ 𝜷

Dot product is a linear combination
We need to add some non-linearity 



Predicting with Logistic 
Regression
Is sigmoid enough? Does adding sigmoid allows us to 
model non-linearly separable data?

https://playground.tensorflow.org/


