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Announcements
• Reading 03 released Monday

• Due Monday 02/13

• HW03 due Wednesday 02/15

• Reading 04
• Due Monday 02/20 – Dictionary Methods

• HW04
• Likely due next Friday
• depends on today and Wednesday’s progress
• Not committing



Course Outline

• Unsupervised approaches
• LMs
• DTM

• Tf-idf
• Clustering

• Dimensionality reduction
• Topic modeling

• Prediction
• Data Collection
• Hypothesis Testing



Outline

Linear Regression

Evaluation 

Logistic Regression

Learning weights



Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function
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Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function
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f (x) = !0 +!1x

Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function



Linear Regression

• Goal is to predict real-valued y given x using a linear
function

• Examples: 
• Given browsing history, how long will a user stay on 

a webpage
• Given a tweet, predict the sentiment
• …



Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function

• What is x?
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Multiple features/covariates

• Represent each datapoint as a vector, each value in 
the vector represents a feature

𝑥 = (𝑥!, 𝑥", 𝑥#, 𝑥$,…., 𝑥%)

• Predict y by fitting a function that is a linear 
combination of the

𝑓 𝑥 = β! + )
&'"

%

β&𝑥&



Multiple features/covariates

• Predict y by fitting a function that is a linear 
combination of the

𝑓 𝑥 =)
&'"

%

β&𝑥&

• Since 𝑥 is a vector, so is β

• What then is the equation?
• Dot-product



Multiple features/covariates
Hyperplane
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Features/Covariates

• When predicting text, what might the features be?
• Counts of n-grams

• They can be other values because for word counts:
• Transformations:

• tf-idf values
• log of counts

• Indicator variables
• Does the sentence mention X

• Interactions of variables
• Number of times mentions function words

• Because of its simplicity and flexibility, linear regression is one of 
the most widely implemented regression techniques 





Which line?

Which line is the best
“fit” to describe 
the data?

Idea: minimize the 
Euclidean distance 
between data and 
fitted line 

𝑅𝑆𝑆 β = "
#
∑('") (𝑦( − 𝜷 0 𝒙()#
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Which line?

Which line is the best
“fit” to describe 
the data?

Idea: minimize the 
Euclidean distance 
between data and 
fitted line 
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the data?
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Which line is the best
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the data?
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Which line?

Which line is the best
“fit” to describe 
the data?
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Which line?

Which line is the best
“fit” to describe 
the data?

Idea: minimize the 
Euclidean distance 
between data and 
fitted line 

𝑅𝑆𝑆 β = "
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Finding 𝛽? 

• Use calculus to find β that minimizes RSS
• Or use the closed-form solution:

2β =
∑('") 𝑦(𝑥(
∑('") 𝑥(#
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Predicting

• For a given 𝑥 predict3𝑦 where
4𝑦 = β! + β"𝑥



Predicting

• If 𝑥 contains multiple features/covariates
4𝑦 = β! + ∑&'"

% β& 𝑥&



Predicting

• For a given 𝑥 predict3𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5

What line?



Predicting

• For a given 𝑥 predict3𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5

What line? y=1.0 + 0.5x



y=1.0 + 0.5x

Predicting

• For a given 𝑥 predict 4𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5
𝑥 = 5.0

What’s 4𝑦?



y=1.0 + 0.5x

x=5.0

• For a given 𝑥 predict 4𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5
𝑥 = 5.0

4𝑦 = 3.5

Predicting



Probabilistic view

We are maximizing  𝑃 𝑌( 𝑥(,𝛽)

Minimizing RSS is equivalent to maximizing 
conditional likelihood

Unlike LDA this is a discriminative model
because we are not modeling observed data

Recall LDA, we compute 𝑃 𝑥( 𝑡𝑜𝑝𝑖𝑐, 𝛽, 𝛼)



Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights



Training a predictor

Copyright © 2016 Barnard College 30

Attributes
(features) of 
an example

Algorithm

Predicted
label of the 
example



Setup for training and evaluating a 
predictor

Copyright © 2016 Barnard College 31Copyright © 2016 Barnard College 31

Data Sample Labels

Training Set

Test Set

Model association 
between attributes 

and labels

Estimate 
model’s 

performance



Two types of predictions: 
Classification & Regression
Classification = Categorical
Regression = Numeric 

Predicting sentiment:
• Classification 

{👍, 👎}

• Regression:
[-1, …, 1]

Copyright © 2016 Barnard College 32



Classification

• Positive/negative 
sentiment  
• Spam/not spam
• Authorship attribution  

(Hamilton or Madison?)
Alexander Hamilton



Text Classification: definition

Input:
• a document x
• a fixed set of classes  C = {c1, c2,…, cJ}

Output: a predicted class !𝑦 Î C

Binary Classification: !𝑦 Î {0, 1}



Outline

Linear Regression

Evaluation 

Logistic Regression

Learning weights



Logistic Regression

Like linear regression because we’ll compute a dot 
product between 

But we’ll learn weights for each class



Logistic Regression Example

𝑓+(𝑥) is “the”

𝑓+(𝑥") =

𝑓+(𝑥#) = 

𝑓+#(𝑥) is “the best”

𝑓+#(𝑥") = 

𝑓+#(𝑥#) = 

Copyright © 2016 Barnard College 37

Document Text Author

𝑋! the lady doth protest too much methinks

𝑋" it was the best of times it was the worst of times

1

2 1

0

Shakespeare
Dickens

Slide from Nate Chambers



Weights
Assume we have a document with the following 
features

Copyright © 2016 Barnard College 39

𝑓"(𝑥)  = 1
𝑓#(𝑥)  = 2
𝑓$(𝑥)  = 1

Slide from Nate Chambers



Weights
Assume we have a document with the following 
features. Goal is to classify the document as being 
written by Shakespeare or Dickens

Let’s add weights to the features

Copyright © 2016 Barnard College 40

𝑓"(𝑥)  = 1
𝑓#(𝑥)  = 2
𝑓$(𝑥)  = 1

Slide from Nate Chambers



Weights
• Now let’s add weights to the features

Copyright © 2016 Barnard College 41

Shakespeare Dickens
𝑓"(𝑥)  = 1 1.31 -0.23
𝑓#(𝑥)  = 2 0.49 0.72
𝑓$(𝑥)  = 1 -0.82 0.1

Slide from Nate Chambers



Weights
• Now let’s add weights to the features
• We want a score for each class label

Copyright © 2016 Barnard College 42

Shakespeare Dickens
𝑓"(𝑥)  = 1 1.31 -0.23
𝑓#(𝑥)  = 2 0.49 0.72
𝑓$(𝑥)  = 1 -0.82 0.1

Slide from Nate Chambers



Weights
• Now let’s add weights to the features
• We want a score for each class label

Copyright © 2016 Barnard College 43

Shakespeare Dickens
𝑓"(𝑥)  = 1 1.31 -0.23
𝑓#(𝑥)  = 2 0.49 0.72
𝑓$(𝑥)  = 1 -0.82 0.1

score(𝑥, 𝑐) = )
(

𝑤(,,𝑓((𝑥)

1.47 1.31

Slide from Nate Chambers



Converting scores to probabilities

Use the logit function!

5.1 • CLASSIFICATION: THE SIGMOID 3

sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z =
1

1+ exp(�z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range



Sigmoid/logistic function

45

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)
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is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)



Idea of logistic regression

•We’ll compute w∙x+b
•And then we’ll pass it through the 

sigmoid function:
σ(w∙x+b)

•And we'll just treat it as a probability
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[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
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movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.
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Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1
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[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:
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=
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=
exp(�(w · x+b))
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The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

0.5 here is called the decision boundary
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is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

wx + b
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

P(y=1)
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
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=
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Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

if w∙x+b > 0
if w∙x+b ≤ 0



Examples

Feature Coefficient Weight

bias 𝛽# 0.1

“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0 𝑃 𝑌 = 0 =
1

1 + exp(0.1)

𝑃 𝑌 = 1 =
exp(0.1)

1 + exp(0.1)

Bias 𝛽& represents the class priors

Example 1: Empty Document
𝑋 = { }

= 0.48

= 0.52
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“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5
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exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

1 + exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

Example 3:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟,𝑊𝑜𝑟𝑘, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎,𝑀𝑜𝑡ℎ𝑒𝑟}

= 0.60

= 0.30



Logistic Regression

• Given a set of weights, 𝛽, compute conditional 
likelihood 𝑃 𝑦 𝛽, 𝑥)

• Find the weights that maximize the conditional 
likelihood on training data

• Intuition: higher weights implies corresponding 
feature is strongly indicative of the class for the 
observation



Outline

Linear Regression

Evaluation 

Logistic Regression

Learning weights



Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization



Distance between "𝑦 and y

We want to know how far is the classifier output:
!𝑦 = σ(w·x+b)

from the true output:
y        [= either 0 or 1]

We'll call this difference:
L( !𝑦 ,y) = how much !𝑦 differs from the true y 



Intuition of negative log likelihood 
loss
= cross-entropy loss
• A case of conditional maximum likelihood 

estimation 
• We choose the parameters w,b that maximize
• the log probability 
• of the true y labels in the training data 
• given the observations x


