
CS 383 – Computational
Text Analysis

Lecture 8
Logistic Regression

Adam Poliak
02/13/2023

Slides adapted Dan Jurafsky, Jordan Boyd-
Graber, Nate Chambers

Announcements
• Reading 03 released Monday

• Due Monday 02/13

• HW03 due Wednesday 02/15

• Reading 04
• Due Monday 02/20 – Dictionary Methods

• HW04
• Likely due next Friday
• depends on today and Wednesday’s progress
• Not committing

Course Outline

• Unsupervised approaches
• LMs
• DTM

• Tf-idf
• Clustering

• Dimensionality reduction
• Topic modeling

• Prediction
• Data Collection
• Hypothesis Testing

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

(xi, yi)

f (x) = !0 +!1x

Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function

Linear Regression

• Goal is to predict real-valued y given x using a linear
function

• Examples:
• Given browsing history, how long will a user stay on

a webpage
• Given a tweet, predict the sentiment
• …

Linear Regression

• Goal is to predict
real-valued y given
x using a linear
function

• What is x?

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Multiple features/covariates

• Represent each datapoint as a vector, each value in
the vector represents a feature

𝑥 = (𝑥!, 𝑥", 𝑥#, 𝑥$,…., 𝑥%)

• Predict y by fitting a function that is a linear
combination of the

𝑓 𝑥 = β! +)
&'"

%

β&𝑥&

Multiple features/covariates

• Predict y by fitting a function that is a linear
combination of the

𝑓 𝑥 =)
&'"

%

β&𝑥&

• Since 𝑥 is a vector, so is β

• What then is the equation?
• Dot-product

Multiple features/covariates
Hyperplane

1 2 3 4 5 6

10
15

20
25

30
35

 0
100

200
300

400
500

x1

x2

y

●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

Features/Covariates

• When predicting text, what might the features be?
• Counts of n-grams

• They can be other values because for word counts:
• Transformations:

• tf-idf values
• log of counts

• Indicator variables
• Does the sentence mention X

• Interactions of variables
• Number of times mentions function words

• Because of its simplicity and flexibility, linear regression is one of
the most widely implemented regression techniques

Which line?

Which line is the best
“fit” to describe
the data?

Idea: minimize the
Euclidean distance
between data and
fitted line

𝑅𝑆𝑆 β = "
#
∑('") (𝑦(− 𝜷 0 𝒙()#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Which line?

Which line is the best
“fit” to describe
the data?

Idea: minimize the
Euclidean distance
between data and
fitted line

𝑅𝑆𝑆 β = "
#
∑('") (𝑦(− 𝜷 0 𝒙()#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Which line?

Which line is the best
“fit” to describe
the data?

Idea: minimize the
Euclidean distance
between data and
fitted line

𝑅𝑆𝑆 β = "
#
∑('") (𝑦(− 𝜷 0 𝒙()#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Which line?

Which line is the best
“fit” to describe
the data?

Idea: minimize the
Euclidean distance
between data and
fitted line

𝑅𝑆𝑆 β = "
#
∑('") (𝑦(− 𝜷 0 𝒙()#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Which line?

Which line is the best
“fit” to describe
the data?

Idea: minimize the
Euclidean distance
between data and
fitted line

𝑅𝑆𝑆 β = "
#
∑('") (𝑦(− 𝜷 0 𝒙()#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Which line?

Which line is the best
“fit” to describe
the data?

Idea: minimize the
Euclidean distance
between data and
fitted line

𝑅𝑆𝑆 β = "
#
∑('") (𝑦(− 𝜷 0 𝒙()#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Finding 𝛽?

• Use calculus to find β that minimizes RSS
• Or use the closed-form solution:

2β =
∑('") 𝑦(𝑥(
∑('") 𝑥(#

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

Predicting

• For a given 𝑥 predict3𝑦 where
4𝑦 = β! + β"𝑥

Predicting

• If 𝑥 contains multiple features/covariates
4𝑦 = β! + ∑&'"

% β& 𝑥&

Predicting

• For a given 𝑥 predict3𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5

What line?

Predicting

• For a given 𝑥 predict3𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5

What line? y=1.0 + 0.5x

y=1.0 + 0.5x

Predicting

• For a given 𝑥 predict 4𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5
𝑥 = 5.0

What’s 4𝑦?

y=1.0 + 0.5x

x=5.0

• For a given 𝑥 predict 4𝑦 where
4𝑦 = β! + β"𝑥

β! = 1.0
β" = 0.5
𝑥 = 5.0

4𝑦 = 3.5

Predicting

Probabilistic view

We are maximizing 𝑃 𝑌(𝑥(,𝛽)

Minimizing RSS is equivalent to maximizing
conditional likelihood

Unlike LDA this is a discriminative model
because we are not modeling observed data

Recall LDA, we compute 𝑃 𝑥(𝑡𝑜𝑝𝑖𝑐, 𝛽, 𝛼)

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Training a predictor

Copyright © 2016 Barnard College 30

Attributes
(features) of
an example

Algorithm

Predicted
label of the
example

Setup for training and evaluating a
predictor

Copyright © 2016 Barnard College 31Copyright © 2016 Barnard College 31

Data Sample Labels

Training Set

Test Set

Model association
between attributes

and labels

Estimate
model’s

performance

Two types of predictions:
Classification & Regression
Classification = Categorical
Regression = Numeric

Predicting sentiment:
• Classification

{👍, 👎}

• Regression:
[-1, …, 1]

Copyright © 2016 Barnard College 32

Classification

• Positive/negative
sentiment
• Spam/not spam
• Authorship attribution

(Hamilton or Madison?)
Alexander Hamilton

Text Classification: definition

Input:
• a document x
• a fixed set of classes C = {c1, c2,…, cJ}

Output: a predicted class !𝑦 Î C

Binary Classification: !𝑦 Î {0, 1}

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Logistic Regression

Like linear regression because we’ll compute a dot
product between

But we’ll learn weights for each class

Logistic Regression Example

𝑓+(𝑥) is “the”

𝑓+(𝑥") =

𝑓+(𝑥#) =

𝑓+#(𝑥) is “the best”

𝑓+#(𝑥") =

𝑓+#(𝑥#) =

Copyright © 2016 Barnard College 37

Document Text Author

𝑋! the lady doth protest too much methinks

𝑋" it was the best of times it was the worst of times

1

2 1

0

Shakespeare
Dickens

Slide from Nate Chambers

Weights
Assume we have a document with the following
features

Copyright © 2016 Barnard College 39

𝑓"(𝑥) = 1
𝑓#(𝑥) = 2
𝑓$(𝑥) = 1

Slide from Nate Chambers

Weights
Assume we have a document with the following
features. Goal is to classify the document as being
written by Shakespeare or Dickens

Let’s add weights to the features

Copyright © 2016 Barnard College 40

𝑓"(𝑥) = 1
𝑓#(𝑥) = 2
𝑓$(𝑥) = 1

Slide from Nate Chambers

Weights
• Now let’s add weights to the features

Copyright © 2016 Barnard College 41

Shakespeare Dickens
𝑓"(𝑥) = 1 1.31 -0.23
𝑓#(𝑥) = 2 0.49 0.72
𝑓$(𝑥) = 1 -0.82 0.1

Slide from Nate Chambers

Weights
• Now let’s add weights to the features
• We want a score for each class label

Copyright © 2016 Barnard College 42

Shakespeare Dickens
𝑓"(𝑥) = 1 1.31 -0.23
𝑓#(𝑥) = 2 0.49 0.72
𝑓$(𝑥) = 1 -0.82 0.1

Slide from Nate Chambers

Weights
• Now let’s add weights to the features
• We want a score for each class label

Copyright © 2016 Barnard College 43

Shakespeare Dickens
𝑓"(𝑥) = 1 1.31 -0.23
𝑓#(𝑥) = 2 0.49 0.72
𝑓$(𝑥) = 1 -0.82 0.1

score(𝑥, 𝑐) =)
(

𝑤(,,𝑓((𝑥)

1.47 1.31

Slide from Nate Chambers

Converting scores to probabilities

Use the logit function!

5.1 • CLASSIFICATION: THE SIGMOID 3

sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z =
1

1+ exp(�z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range

Sigmoid/logistic function

45

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

Idea of logistic regression

•We’ll compute w∙x+b
•And then we’ll pass it through the

sigmoid function:
σ(w∙x+b)

•And we'll just treat it as a probability

Making probabilities with sigmoids

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

By the way:

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

=

Because

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

Turning a probability into a classifier

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

0.5 here is called the decision boundary

The probabilistic classifier

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

wx + b

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

P(y=1)

Turning a probability into a classifier

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

if w∙x+b > 0
if w∙x+b ≤ 0

Examples

Feature Coefficient Weight

bias 𝛽# 0.1

“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0 𝑃 𝑌 = 0 =
1

1 + exp(0.1)

𝑃 𝑌 = 1 =
exp(0.1)

1 + exp(0.1)

Bias 𝛽& represents the class priors

Example 1: Empty Document
𝑋 = { }

= 0.48

= 0.52

Examples

Feature Coefficient Weight

bias 𝛽# 0.1

“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

Example 2:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎}

Examples
Feature Coefficient Weight

bias 𝛽# 0.1

“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

𝑃 𝑌 = 0 =
1

1 + exp(0.1 − 1.0 + 3.0)

𝑃 𝑌 = 1 =
exp(0.1 − 1.0 + 3.0)

1 + exp(0.1 − 1.0 + 3.0)

Example 2:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎}

= 0.11

= 0.88

Examples
Feature Coefficient Weight

bias 𝛽# 0.1

“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

Example 3:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟,𝑊𝑜𝑟𝑘, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎,𝑀𝑜𝑡ℎ𝑒𝑟}

Examples
Feature Coefficient Weight

bias 𝛽# 0.1

“viagra” 𝛽! 2.0

“mother” 𝛽" -1.0

“work” 𝛽$ -0.5

“nigeria” 𝛽% 3.0

𝑃 𝑌 = 0 =
1

1 + exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

𝑃 𝑌 = 1 =
exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

1 + exp(0.1 − 1.0 + 2.0 + 3.0 − 1.0)

Example 3:
𝑋 = { 𝑀𝑜𝑡ℎ𝑒𝑟,𝑊𝑜𝑟𝑘, 𝑁𝑖𝑔𝑒𝑟𝑖𝑎,𝑀𝑜𝑡ℎ𝑒𝑟}

= 0.60

= 0.30

Logistic Regression

• Given a set of weights, 𝛽, compute conditional
likelihood 𝑃 𝑦 𝛽, 𝑥)

• Find the weights that maximize the conditional
likelihood on training data

• Intuition: higher weights implies corresponding
feature is strongly indicative of the class for the
observation

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Process Learning Weights

1. Randomly initialize weights

2. Make predictions !𝑦

3. Quantify how close !𝑦 and 𝑦 are
We call this the distance

4. Update weights accordingly

5. Repeat 2-4

aka Loss function

aka Optimization

Distance between "𝑦 and y

We want to know how far is the classifier output:
!𝑦 = σ(w·x+b)

from the true output:
y [= either 0 or 1]

We'll call this difference:
L(!𝑦 ,y) = how much !𝑦 differs from the true y

Intuition of negative log likelihood
loss
= cross-entropy loss
• A case of conditional maximum likelihood

estimation
• We choose the parameters w,b that maximize
• the log probability
• of the true y labels in the training data
• given the observations x

