

CS 383 – Computational Text Analysis

Lecture 8 Logistic Regression

Adam Poliak 02/13/2023

Slides adapted Dan Jurafsky, Jordan Boyd-Graber, Nate Chambers

Announcements

- Reading 03 released Monday
 - Due Monday 02/13
- HW03 due Wednesday 02/15
- Reading 04
 - Due Monday 02/20 Dictionary Methods
- HW04
 - Likely due next Friday
 - depends on today and Wednesday's progress
 - Not committing

Course Outline

- Unsupervised approaches
 - LMs
 - DTM
 - Tf-idf
 - Clustering
 - Dimensionality reduction
 - Topic modeling
- Prediction
- Data Collection
- Hypothesis Testing

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Goal is to predict
 real-valued y given
 x using a linear
 function

 Goal is to predict real-valued y given x using a linear
 function

>

 Goal is to predict ° real-valued y given_↓ x using a linear function [∾]

- Goal is to predict real-valued y given x using a linear function
- Examples:
 - Given browsing history, how long will a user stay on a webpage
 - Given a tweet, predict the sentiment
 - ..

- Goal is to predict real-valued y given[∞] x using a linear function
- What is x?

Multiple features/covariates

 Represent each datapoint as a vector, each value in the vector represents a *feature*

$$x = (x_0, x_1, x_2, x_3, \dots, x_p)$$

Predict y by fitting a function that is a linear combination of the

$$f(x) = \beta_0 + \sum_{j=1}^p \beta_j x_j$$

Multiple features/covariates

 Predict y by fitting a function that is a linear combination of the

$$f(x) = \sum_{j=1}^{p} \beta_j x_j$$

- Since x is a vector, so is β
- What then is the equation?
 - Dot-product

Multiple features/covariates

Hyperplane

x1

Features/Covariates

- When predicting text, what might the features be?
 - Counts of n-grams
- They can be other values because for word counts:
 - Transformations:
 - tf-idf values
 - log of counts
 - Indicator variables
 - Does the sentence mention X
 - Interactions of variables
 - Number of times mentions function words
- Because of its simplicity and flexibility, linear regression is one of the most widely implemented regression techniques

Which line is the best 🔹 "fit" to describe the data?

Which line is the best 🔹 "fit" to describe the data?

Which line is the best 🔹 "fit" to describe the data?

Which line is the best 🔹 "fit" to describe the data?

Which line is the best 🔹 "fit" to describe the data?

Which line is the best \checkmark "fit" to describe the data?

Finding β ?

- Use calculus to find β that minimizes RSS
- Or use the closed-form solution:

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}$$

• For a given x predict \hat{y} where

$$\hat{y} = \beta_0 + \beta_1 x$$

• If x contains multiple features/covariates

$$\hat{y} = \beta_0 + \sum_{j=1}^p \beta_j x_j$$

• For a given x predict \hat{y} where

$$\hat{y} = \beta_0 + \beta_1 x$$

• For a given x predict \hat{y} where

$$\hat{y} = \beta_0 + \beta_1 x$$

• For a given x predict \hat{y} where

$$\hat{y} = \beta_0 + \beta_1 x$$

• For a given x predict \hat{y} where

$$\hat{y} = \beta_0 + \beta_1 x$$

Probabilistic view

We are maximizing $P(Y_i|x_i,\beta)$

Minimizing RSS is equivalent to maximizing conditional likelihood

Unlike LDA this is a *discriminative* model because we are not modeling observed data

Recall LDA, we compute $P(x_i | topic, \beta, \alpha)$

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Training a predictor

Setup for training and evaluating a predictor

Two types of predictions: Classification & Regression

Classification = Categorical Regression = Numeric

Predicting sentiment:

Classification

• Regression:

[-1, ..., 1]

Classification

- Positive/negative sentiment
- Spam/not spam
- Authorship attribution (Hamilton or Madison?)

Alexander Hamilton

Text Classification: definition

Input:

- a document **x**
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

Output: a predicted class $\hat{y} \in C$

Binary Classification: $\hat{y} \in \{0, 1\}$

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Logistic Regression

Like linear regression because we'll compute a dot product between

But we'll learn weights for each class

Logistic Regression Example

Document	Text	Author
<i>X</i> ₁	the lady doth protest too much methinks	Shakespeare
<i>X</i> ₂	it was the best of times it was the worst of times	Dickens

 $f_7(x)$ is "the"

 $f_{72}(x)$ is "the best"

 $f_7(x_1) = 1$ $f_{72}(x_1) = 0$

 $f_7(x_2) = 2$

 $f_{72}(x_2) = 1$

Weights Assume we have a document with the following features

$$f_1(x) = 1$$

 $f_2(x) = 2$
 $f_3(x) = 1$

Assume we have a document with the following features. Goal is to classify the document as being written by Shakespeare or Dickens

$$f_1(x) = 1$$

 $f_2(x) = 2$
 $f_3(x) = 1$

Let's add weights to the features

• Now let's add *weights* to the features

	Shakespeare	Dickens
$f_1(x) = 1$	1.31	-0.23
$f_2(x) = 2$	0.49	0.72
$f_3(x) = 1$	-0.82	0.1

- Now let's add *weights* to the features
- We want a score for each class label

	Shakespeare	Dickens
$f_1(x) = 1$	1.31	-0.23
$f_2(x) = 2$	0.49	0.72
$f_3(x) = 1$	-0.82	0.1

- Now let's add *weights* to the features
- We want a score for each class label

	Shakespeare	Dickens
$f_1(x) = 1$	1.31	-0.23
$f_2(x) = 2$	0.49	0.72
$f_3(x) = 1$	-0.82	0.1
	1.47	1.31
	~	٦

$$\operatorname{score}(x,c) = \sum_{i} w_{i,c} f_i(x)$$

Copyright © 2016 Barnard College

Converting scores to probabilities

Use the logit function!

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

Sigmoid/logistic function

Idea of logistic regression

- $\bullet \text{ We'll compute } w{\cdot}x{+}b \\$
- And then we'll pass it through the sigmoid function:

 $\sigma(w \cdot x + b)$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

= $1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$
= $\frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$

$$P(y=0) = 1 - \sigma(w \cdot x + b) = \sigma(-(w \cdot x + b))$$

= $1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$
= $\frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$
Because
 $1 - \sigma(x) = \sigma(-x)$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the **decision boundary**

Turning a probability into a classifier

$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} & \text{if } w \cdot x + b \le 0 \end{cases}$

Feature	Coefficient	Weight	
bias	eta_0	0.1	
"viagra"	eta_1	2.0	
"mother"	β_2	-1.0	
"work"	eta_3	-0.5	
"nigeria"	eta_4	3.0	ł

Example 1: Empty Document X = { }

$$\begin{array}{c} -0.5 \\ 3.0 \end{array} P(Y=0) = \frac{1}{1 + \exp(0.1)} = 0.48 \end{array}$$

$$P(Y = 1) = \frac{\exp(0.1)}{1 + \exp(0.1)} = 0.52$$

Bias β_0 represents the class priors

Feature	Coefficient	Weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 2: X = { *Mother*, *Nigeria*}

Feature	Coefficient	Weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 2: X = { *Mother*, *Nigeria*}

$$P(Y = 0) = \frac{1}{1 + \exp(0.1 - 1.0 + 3.0)} = 0.11$$
$$P(Y = 1) = \frac{\exp(0.1 - 1.0 + 3.0)}{1 + \exp(0.1 - 1.0 + 3.0)} = 0.88$$

Feature	Coefficient	Weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3: X = { Mother, Work, Nigeria, Mother}

Feature	Coefficient	Weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3: X = { Mother, Work, Nigeria, Mother}

$$P(Y = 0) = \frac{1}{1 + \exp(0.1 - 1.0 + 2.0 + 3.0 - 1.0)} = 0.60$$
$$P(Y = 1) = \frac{\exp(0.1 - 1.0 + 2.0 + 3.0 - 1.0)}{1 + \exp(0.1 - 1.0 + 2.0 + 3.0 - 1.0)} = 0.30$$

Logistic Regression

- Given a set of weights, β , compute conditional likelihood $P(y | \beta, x)$
- Find the weights that maximize the conditional likelihood on training data
- Intuition: higher weights implies corresponding feature is strongly indicative of the class for the observation

Outline

Linear Regression

Evaluation

Logistic Regression

Learning weights

Process Learning Weights

- 1. Randomly initialize weights
- 2. Make predictions \hat{y}
- 3. Quantify how close \hat{y} and y are We call this the **distance** aka Loss function
- 4. Update weights accordingly aka Optimization

5. Repeat 2-4

Distance between \hat{y} and y

We want to know how far is the classifier output: $\hat{y} = \sigma(w \cdot x + b)$

from the true output:

y [= either 0 or 1]

We'll call this difference:

 $L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$

Intuition of negative log likelihood loss

- = cross-entropy loss
 - A case of conditional maximum likelihood estimation
 - We choose the parameters w,b that maximize
 - the log probability
 - of the true *y* labels in the training data
 - given the observations x