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Announcements
• Office Hours:
• This week: Thursday 3:30-4:30pm 

• HW02 due Wednesday 02/08

• Reading 03 released today
• Due Monday 02/13

• HW03 due Wednesday 02/15
• Released today



Outline

• Clustering 
• Topic Modeling - LDA



Clustering
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Different Types of Machine 
Learning
• Supervised Learning
• Given labeled examples, learn rules

• Unsupervised Learning
• Given unlabeled example, learn patterns
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Slide from Tony Liu
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Clustering

• Unsupervised learning 
• Requires data, but no labels 

• Detect patterns e.g. in 
• Group emails 
• Group obituaries 
• Group any documents

• Useful when don’t know what you’re looking for
• Good way to explore your data

Copyright © 2016 Barnard College 6

Slide from David Sontag



Idea: group together similar 
instances 
• Example: 2D point patterns 
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Idea: group together similar 
instances 
• Example: 2D point patterns 
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Clustering HW02

• HW02 analyzed obits

• Why might we want to cluster obits?

• Find groups of similar obituaries
• Find topics of obituaries
• …
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K-Means Algorithm

Copyright © 2016 Barnard College



K-means Algorithms
1. Initialize: Randomly pick K points as cluster centers
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Randomly pick K points as centers

• Example: 2D point patterns 
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K-means Algorithms
1. Initialize: Randomly pick K points as cluster centers

2. Assign data points to each cluster
1. Based on distance between point and cluster’s center
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Assign data points to each cluster

• Example: 2D point patterns 
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Assign data points to each cluster

• Example: 2D point patterns 
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Assign data points to each cluster

• Example: 2D point patterns 
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K-means Algorithms
1. Initialize: Randomly pick K points as cluster centers

2. Assign data points to each cluster
1. Based on distance between point and cluster’s center

3. Update the center of each cluster
1. The average of its assigned points
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Update Centers

• Example: 2D point patterns 
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Update Centers

• Example: 2D point patterns 

Copyright © 2016 Barnard College 20

Y

X



Updated Centers

• Example: 2D point patterns 
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K-means Algorithms
1. Initialize: Randomly pick K points as cluster centers

2. Assign data points to each cluster
1. Based on distance between point and cluster’s center

3. Update the center of each cluster
1. The average of its assigned points

4. Repeat 2 & 3 until the assignments stop changing 
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Reassign data points to each 
cluster
• Example: 2D point patterns 
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Reassign data points to each 
cluster
• Example: 2D point patterns 
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Reassign data points to each 
cluster
• Example: 2D point patterns 
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K-means Algorithms
1. Initialize: Randomly pick K points as cluster centers

2. Assign data points to each cluster
1. Based on distance between point and cluster’s center

3. Update the center of each cluster
1. The average of its assigned points

4. Repeat 2 & 3 until the assignments stop changing 
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K-means Algorithms
1. Initialize: Randomly pick K points as cluster centers

2. Assign data points to each cluster
1. Based on distance between point and cluster’s center

3. Update the center of each cluster
1. The average of its assigned points

4. Repeat 2 & 3 until the assignments stop changing 
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How do we quantify 
similarity/distance?

We need to define similarity/distance

Similarity metrics we’ve seen so far:
cos similarity 

Euclidian distance between two documents 𝑥! and 𝑥"

𝐷 = $
#

(𝑥!! − 𝑥"#)"
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Outline

• Clustering 
• Topic Modeling – LDA
• Background: Multinomial, Dirichlet Distributions



Topic Modeling

• Goal: Identify underlying topics across documents 
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What are topics?

Tokens that are likely to appear in the same context

Hidden structure that determines how tokens appear in a 
corpus
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Observation

Want to uncover



Input: 
Millions of Books

Output: topics
(distributions over  words)

Each row is a topic
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Topic Modeling: Corpora -> Topics

Slide from David Mimno



Background
Each row represents a 
Document vector

Number of times each
word appeared

A distribution of discrete 
outcomes, when normalized 
sums to 1

Multinomial Distribution!



Background
Each row represents a 
Document vector

Number of times each 
word appeared

A distribution of discrete 
outcomes, when normalized 
sums to 1

Multinomial Distribution!

(1,0,0) (0,0,1)

(1/2,1/2,0)(1/3,1/3,1/3) (1/4,1/4,1/2)

(0,1,0)
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Background
Dirichlet Distribution: 
Distribution over the 
multinomial distributions
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Background
Dirichlet Distribution: 
Distribution over the 
multinomial distributions
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Discovering Topics
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How do we discover topics?

• Latent Semantic Analysis

• Probabilistic Latent Semantic Analysis

• Latent Dirichlet Allocation
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How do we discover topics?

• Latent Semantic Analysis

• Probabilistic Latent Semantic Analysis

• Latent Dirichlet Allocation
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LDA

• Probabilistic model

• Generative model
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LDA Generative Story

• Each word appears independent of each other

• Each word depends on the topic
• Topics have a distribution of words
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Distribution of topics over words

• Each topic is a multinomial 
distribution over words

computer, 

technology, 

system, 

service, site, 

phone, 

internet, 

machine

play, film, 

movie, theater, 

production, 

star, director, 

stage

sell, sale, 

store, product, 

business, 

advertising, 

market, 

consumer

TOPIC 1

TOPIC 2

TOPIC 3
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LDA Generative Story

• Each word appears independent of each other

• Each word depends on the topic
• Topics have a distribution of words
• Topics have a distribution of documents
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Distribution of topics over 
documents

Forget the Bootleg, Just 
Download the Movie Legally

Multiplex Heralded As 
Linchpin To Growth

The Shape of Cinema, 
Transformed At the Click of 

a Mouse

A Peaceful Crew Puts 
Muppets Where Its Mouth Is

Stock Trades: A Better Deal 
For Investors Isn't Simple

The three big Internet 
portals begin to distinguish 

among themselves as 
shopping mallsRed Light, Green Light: A 

2-Tone L.E.D. to 
Simplify Screens

TOPIC 2

TOPIC 3

TOPIC 1
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LDA Generative Story

• Each word appears independent of each other

• Each word depends on the topic
• Topics have a distribution of words
• Topics have a distribution of documents
• Both are multinomial distributions!
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Generating a document

Hollywood studios are preparing to let people 

download and buy electronic copies of movies over 

the Internet, much as record labels now sell songs for 

99 cents through Apple Computer's iTunes music store 

and other online services ...

computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer
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LDA Plate Notation

Copyright © 2016 Barnard College 54



LDA Plate Notation

M = number of documents
N = number of words in a document
K = number of topics (we choose this)
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LDA Plate Notation

M = number of documents
N = number of words in a document
K = number of topics (we choose this)
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For each document

For each word



LDA Plate Notation

M = number of documents
N = number of words in a document
K = number of topics (we choose this)
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For each document

For each word
Assign the topic



LDA Plate Notation
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For each document

For each word
Assign the topic

Given p(topic | document)

Given p(word | topic)



LDA Plate Notation
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For each document

For each word
Assign the topic

Given p(topic | document)

Given p(word | topic)

Dirichlet priors



LDA Plate Notation
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LDA Plate notation
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LDA Algorithm
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Hollywood studios are preparing to let people 

download and buy electronic copies of movies over 
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Training LDA Model

1. Randomly assign words to topics
2. Repeat many times:

1. For each document:
1. For each token, re-assign the topic based on:

1. Topic assignment for every other token in the document
2. Topic assignment for every other instance of the type in the the 

corpus

3. Return: Topics assignments for all tokens
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Randomly assign words to topics
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Randomly assign words to topics
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Randomly assign words to topics
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Global Statistics from Random 
Topic Assignments
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3 2 1 3 1
Etruscan trade price temple market

1 2 3
Etruscan 1 0 35

trade 10 8 1
price 42 1 0
market 50 0 1
temple 0 0 20

…

Total counts across corpus

Example David Mimno



Training LDA Model

1. Randomly assign words to topics
2. Repeat many times:

1. For each document:
1. For each token, re-assign the topic based on:

1. Topic assignment for every other token in the document
2. Topic assignment for every other instance of the type in the the 
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Training LDA Model

1. Randomly assign words to topics
2. Repeat many times:
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Reassign topic for “Trade”

Copyright © 2016 Barnard College 76

3 2 1 3 1
Etruscan trade price temple market

1 2 3
Etruscan 1 0 35

trade 10 8 1
price 42 1 0
market 50 0 1
temple 0 0 20

…



Reassign topic for “Trade”
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Reassign topic for “Trade”
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Reassign topic for “Trade”

Copyright © 2016 Barnard College 79

3 ? 1 3 1
Etruscan trade price temple market

1 2 3
Etruscan 1 0 35

trade 10 7 1
price 42 1 0
market 50 0 1
temple 0 0 20

…



Which topics occur in this document?
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Pick a topic for “Trade”

3 ? 1 3 1
Etruscan trade price temple market



Which topics like the word-type “trade”?
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Pick a topic for “Trade”

3 ? 1 3 1
Etruscan trade price temple market
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trade 10 7 1



Which topics like the word “trade”?
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Pick a topic for “Trade”
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Pick a topic for “trade”?
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Pick a topic for “Trade”
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Update topic for “Trade”
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Update topic for “Trade”
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Training LDA Model – Gibbs 
Sampling
1. Randomly assign words to topics
2. Repeat many times:

1. For each document:
1. For each token, re-assign the topic based on:

1. Topic assignment for every other token in the document
2. Topic assignment for every other instance of the type in the the 

corpus

3. Return: Topics assignments for all tokens
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Modeling Decisions
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Modeling decisions – hard choices

• Document definition

• Interesting words

• Knobs:
• K - Number of topics
• Hyper-parameters
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Which topics like the word “trade”?
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Hyperparameters - alpha
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Which topics like the word “trade”?
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Hyperparameters
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Which topics like the word “trade”?
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Hyperparameters
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Evaluating Topics
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Output of topic models
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What makes topics bad?

• Random, unrelated words
• Intruder words
• Boring, overly general words
• Chimaeras:
• Multiple topics combined
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Evaluation – Word Intrusion Task

• Take top k words in a topic
• Usually 5 or 10

• Substitute 1 word with a top word from another 
topic
• Shuffle the works
• Ask someone to pick the intruder
• If they can pick the intruder – it’s a good topic
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