

CS 383 – Computational Text Analysis

Lecture 6 Clustering, LDA

> Adam Poliak 02/06/2023

Slides adapted David Mimno, Jordan Boyd-Graber

Announcements

- Office Hours:
 - This week: Thursday 3:30-4:30pm
- HW02 due Wednesday 02/08
- Reading 03 released today
 - Due Monday 02/13
- HW03 due Wednesday 02/15
 - Released today

Outline

- Clustering
- Topic Modeling LDA

Clustering

Copyright © 2016 Barnard College

Different Types of Machine Learning

- Supervised Learning
 - Given labeled examples, learn rules
- Unsupervised Learning
 - Given unlabeled example, learn patterns

Clustering

- Unsupervised learning
 - Requires data, but no labels
- Detect patterns e.g. in
 - Group emails
 - Group obituaries
 - Group any documents
- Useful when don't know what you're looking for
- Good way to explore your data

Slide from David Sontag

Idea: group together similar instances

Idea: group together similar instances

Clustering HW02

- HW02 analyzed obits
- Why might we want to cluster obits?
 - Find groups of similar obituaries
 - Find topics of obituaries
 - ...

K-Means Algorithm

Copyright © 2016 Barnard College

K-means Algorithms

1. Initialize: Randomly pick K points as cluster centers

Randomly pick K points as centers

K-means Algorithms

- 1. Initialize: Randomly pick K points as cluster centers
- 2. Assign data points to each cluster
 - 1. Based on distance between point and cluster's center

K-means Algorithms

- 1. Initialize: Randomly pick K points as cluster centers
- 2. Assign data points to each cluster
 - 1. Based on distance between point and cluster's center
- 3. Update the center of each cluster
 - 1. The average of its assigned points

Update Centers

Update Centers

Updated Centers

K-means Algorithms

- 1. Initialize: Randomly pick K points as cluster centers
- 2. Assign data points to each cluster
 - 1. Based on distance between point and cluster's center
- 3. Update the center of each cluster
 - 1. The average of its assigned points
- 4. Repeat 2 & 3 until the assignments stop changing

K-means Algorithms

- 1. Initialize: Randomly pick K points as cluster centers
- 2. Assign data points to each cluster
 - 1. Based on distance between point and cluster's center
- 3. Update the center of each cluster
 - 1. The average of its assigned points
- 4. Repeat 2 & 3 until the assignments stop changing

K-means Algorithms

- 1. Initialize: Randomly pick K points as cluster centers
- 2. Assign data points to each cluster
 - 1. Based on **distance between** point and cluster's center
- 3. Update the center of each cluster
 - 1. The average of its assigned points
- 4. Repeat 2 & 3 until the assignments stop changing

How do we quantify similarity/distance? We need to define similarity/distance

Similarity metrics we've seen so far: cos similarity

Euclidian distance between two documents x_1 and x_2

$$D = \sqrt{\sum_{i} (x_{1_i} - x_{2_i})^2}$$

Outline

- Clustering
- Topic Modeling LDA
 - Background: Multinomial, Dirichlet Distributions

Topic Modeling

Goal: Identify underlying topics across documents

What are topics?

Observation

Tokens that are likely to appear in the same context

Hidden structure that determines how **tokens** appear in a corpus

Want to uncover

Topic Modeling: Corpora -> Topics

Input: Millions of Books

Output: topics (distributions over words)

killed wounded sword slain arms military rifle wounds loss human Plato Socrates universe philosophical minds ethics inflammation affected abdomen ulcer circulation heart ships fleet sea shore Admiral vessels land boats admiral sister child tears pleasure daughters loves wont sigh warm sentence clause syllable singular examples clauses syllables provinces princes nations imperial possessions invasion women Quebec Women Iroquois husbands thirty whom steam engines power piston boilers plant supplied chimney lines points direction planes Lines scale sections extending

Each row is a topic

Background

Each row represents a Document vector

Number of times each word appeared

A distribution of discrete outcomes, when normalized sums to 1

Multinomial Distribution!

Background

Each row represents a Document vector

Number of times each word appeared

A distribution of discrete outcomes, when normalized sums to 1

(1,0,0) (0,0,1) (0,1,0) (0,1,0) (1/3,1/3,1/3) (1/4,1/4,1/2) (1/2,1/2,0)

Multinomial Distribution!

Background $P(\mathbf{p} | \alpha \mathbf{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k}-1}$

Dirichlet Distribution: Distribution over the multinomial distributions

Background
$$P(\mathbf{p} | \alpha \mathbf{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k}-1}$$

Dirichlet Distribution: Distribution over the multinomial distributions

$$\alpha = 3, \boldsymbol{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

Slide from Jordan Boyd-Graber
Background $P(\mathbf{p} | \alpha \mathbf{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k}-1}$

Dirichlet Distribution: Distribution over the multinomial distributions

$$\alpha = 3, \boldsymbol{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
 $\alpha = 6, \boldsymbol{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Background
$$P(\mathbf{p} | \alpha \mathbf{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k}-1}$$

Dirichlet Distribution: Distribution over the multinomial distributions

$$\alpha = 3, \boldsymbol{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$\alpha = 6, \mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$\alpha = 30, \boldsymbol{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

Background
$$P(\mathbf{p} | \alpha \mathbf{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k}-1}$$

Dirichlet Distribution: Distribution over the multinomial distributions

$$\alpha = 14, \, \boldsymbol{m} = (\frac{1}{7}, \frac{5}{7}, \frac{1}{7}) \qquad \alpha = 14, \, \boldsymbol{m} = (\frac{1}{7}, \frac{1}{7}, \frac{5}{7}) \qquad \alpha = 2.7, \, \boldsymbol{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

Discovering Topics

Copyright © 2016 Barnard College

How do we discover topics?

- Latent Semantic Analysis
- Probabilistic Latent Semantic Analysis
- Latent Dirichlet Allocation

How do we discover topics?

- Latent Semantic Analysis
- Probabilistic Latent Semantic Analysis
- Latent Dirichlet Allocation

LDA

- Probabilistic model
- Generative model

LDA Generative Story

- Each word appears independent of each other
- Each word depends on the topic
 - Topics have a distribution of words

Distribution of topics over words

TOPIC 1 computer, technology, system, service, site, phone, internet. machine **TOPIC 2** sell, sale, store, product, business, advertising, market, consumer **TOPIC 3** play, film, movie, theater, production, star, director, stage

• Each topic is a multinomial distribution over words

LDA Generative Story

- Each word appears independent of each other
- Each word depends on the topic
 - Topics have a distribution of words
 - Topics have a distribution of documents

Distribution of topics over documents

<u>Slide from Jordan Boyd-Graber≈</u>

LDA Generative Story

- Each word appears independent of each other
- Each word depends on the topic
 - Topics have a distribution of words
 - Topics have a distribution of documents
 - Both are multinomial distributions!

computer, technology, system, service, site, phone, internet, machine		sell, sale, store, product, business, advertising, market, consumer		play, film, movie, theater, production, star, director, stage
---	--	--	--	---

Holywood studies are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes mus and other online services ...

- M = number of documents N = number of words in a document
- K = number of topics (we choose this)

- M = number of documents N = number of words in a document
- K = number of topics (we choose this)

- M = number of documents N = number of words in a document
- K = number of topics (we choose this)

LDA Algorithm

Copyright © 2016 Barnard College

	computer, technology, system, service, site, phone, internet, machine		sell, sale, store, product, business, advertising, market, consumer		play, film, movie, theater, production, star, director, stage
--	---	--	--	--	---

	computer, technology, system, service, site, phone, internet, machine		sell, sale, store, product, business, advertising, market, consumer		play, film, movie, theater, production, star, director, stage
--	---	--	--	--	---

	computer, technology, system, service, site, phone, internet, machine		sell, sale, store, product, business, advertising, market, consumer		play, film, movie, theater, production, star, director, stage
--	---	--	--	--	---

	computer, technology, system, service, site, phone, internet, machine		sell, sale, store, product, business, advertising, market, consumer		play, film, movie, theater, production, star, director, stage
--	---	--	--	--	---

Training LDA Model

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

	music band songs rock album jazz pop song singer night	book life novel story books man stories love children family	art museum show exhibition artist paintings painting century works	game Knicks points team season play games night coach	show film television movie series says life man character know
Сору	theater play production show strage broadway director musical directed	clinton bush campaign gore political republican dole presidential senator house	stock market percent fund investors funds companies stocks investment trading	restaurant sauce menu tood dishes street dining dinner chicken served	budget tax governor county mayor billion taxes plan legislature Tiscal

Training LDA Model

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

Etruscan	trade	price	temple	market

Global Statistics from Random Topic Assignments

3		2	1		3		1
Etruscan	tra	ide	le pric		temple	e m	arket
		Total cou		unts a	cross cor	pus	
				1	2	3	
		Etruscan trade		1	0	35	
				10	8	1	
		pri	ce	42	1	0	
		market temple 		50	0	1	
				0	0	20	

Copyright © 2016 Barnard College Example David Mimno
Training LDA Model

1. Randomly assign words to topics

- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

Training LDA Model

1. Randomly assign words to topics

- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

3	2	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20
•••			

Copyright © 2016 Barnard College

3	2	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20
•••			

3	?	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
trade	10	8	1
price	42	1	0
market	50	0	1
temple	0	0	20
•••			

3	?	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
trade	10	7	1
price	42	1	0
market	50	0	1
temple	0	0	20
•••			

3	?	1	3	1
Etruscan	trade	price	temple	market

Which topics occur in this document?

Topic 1Topic 2Topic 3

3	?	1	3	1
Etruscan	trade	price	temple	market

Which topics like the word-type "trade"?

	1	2	3
trade	10	7	1

3	?	1	3	1
Etruscan	trade	price	temple	market

Which topics like the word "trade"?

3	?	1	3	1
Etruscan	trade	price	temple	market

Pick a topic for "trade"?

Update topic for "Trade"

3	?	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
trade	10	7	1
price	42	1	0
market	50	0	1
temple	0	0	20

Update topic for "Trade"

3	1	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
trade	11	7	1
price	42	1	0
market	50	0	1
temple	0	0	20

Training LDA Model – Gibbs Sampling

- 1. Randomly assign words to topics
- 2. Repeat many times:
 - 1. For each document:
 - 1. For each token, re-assign the topic based on:
 - 1. Topic assignment for every other token in the document
 - 2. Topic assignment for every other instance of the type in the the corpus
- 3. Return: Topics assignments for all tokens

Modeling Decisions

Copyright © 2016 Barnard College

Modeling decisions – hard choices

- Document definition
- Interesting words
- Knobs:
 - K Number of topics
 - Hyper-parameters

Hyperparameters

3	?	1	3	1
Etruscan	trade	price	temple	market

Which topics like the word "trade"?

Hyperparameters - alpha

Topic 1

Hyperparameters

Which topics like the word "trade"?

Hyperparameters

Which topics like the word "trade"?

Evaluating logics

and and the

Copyright © 2016 Barnard College

Output of topic models

Top 10 topic terms

face, problem, depress, econom, suffer, economi, caus, great depress, crisi, prosper bank, money, tax, pay, debt, loan, rais, fund, paid, govern worker, labor, work, union, job, employ, strike, factori, industri, wage govern, power, feder, nation, peopl, author, constitut, state, system, unit roosevelt, wilson, peac, presid, treati, negoti, theodor roosevelt, taft, leagu, agreement men, women, famili, children, young, work, woman, home, mother, husband citi, york, urban, hous, live, town, center, communiti, move, chicago railroad, build, line, technolog, transport, road, develop, travel, invent, canal good, trade, product, manufactur, market, import, produc, economi, consum, tariff farmer, farm, planter, small, land, cotton, plantat, crop, famili, larg

What makes topics bad?

- Random, unrelated words
- Intruder words
- Boring, overly general words
- Chimaeras:
 - Multiple topics combined

Evaluation – Word Intrusion Task

- Take top k words in a topic
 - Usually 5 or 10
- Substitute 1 word with a top word from another topic
- Shuffle the works
- Ask someone to pick the intruder
 - If they can pick the intruder it's a good topic