

Announcements

- Office Hours:
- This week: Thursday 3:30-4:30pm
- HWO2 released last night, due Wednesday 02/08

Outline

- ML vs CTA vs CL (according to Adam)
- Recap
- Word Representations

Natıural I anoıage Processing

G. Goog
 Transla

New message
$-\times x$

Design Project Quote

Bob, thanks for the call. Wed like to accept your offer and
move forward with
Thanks
Susan
Add the punctuation
We'd

amazon echo

Natural Language Processing

Natural Language Processing

Natural Language Processing

- Goal of ML: algorithmic contribution

ML
HLT

Natural Language Processing

- Goal of ML: algorithmic contribution

ML

- Goal of CL: understand humans \& language

Natural Language Processing

 AI
HLT

Text as data

Natural Language Processing
-Goal of AI: AI

HLT

Text as data

Natural Language Processing

-Goal of AI:

Goal of Text as Data:

How we do things with words: Analyzing text as social and cultural data

Dong Nguyen ${ }^{1,2}$, Maria Liakata ${ }^{1,3}$, Simon DeDeo ${ }^{4}$, Jacob Eisenstein ${ }^{5}$, David Mimno ${ }^{6}$, Rebekah Tromble ${ }^{1,7}$, and Jane Winters ${ }^{8}$

Text as data

Natural Language Processing

 AIText as data

Natural Language Processing

 AIText as data

What is Computational Text Analysis?

Computational Text Analysis

- "Data science is the study of extracting value from data" -

Jeannettag Naing tex kual

Adam Poliak

Outline

- ML vs CTA vs CL (according to Adam)
- Recap
- Word Representations

Recap so far

The first class was all about counting words
$2^{\text {nd }} 3^{\text {rd }}$ classes about the power of counting words.

By counting words we can \qquad
learn about language
generate language
categorize language
represent documents as vectors
$4^{\text {th }}$ class: reducing dimensions of count matrices

Why Reduce Dimensions?

Discover hidden correlations/topics

- Words that occur commonly together

Remove redundant and noisy features

- Not all words are useful

Interpretation and visualization
Easier storage and processing of the data

Rank of a Matrix

- Q: What is rank of a matrix \mathbf{A} ?
- A: Number of linearly independent columns of \mathbf{A}
- For example:
- Matrix $\mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right]$ has rank $\mathbf{r}=\mathbf{2}$
- Why? The first two rows are linearly independent, so the rank is at least 2 , but all three rows are linearly dependent (the first is equal to the sum of the second and third) so the rank must be less than 3 .
- Why do we care about low rank?
- We can write A as two "basis" vectors: [1 2 1] [-2 -31$]$
- And new coordinates of : [1 0] [0 1] [1-1]

Rank is "Dimensionality"

- Cloud of points 3D space:
- Think of point positions

1 row per point: $\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right] \begin{gathered}\mathbf{A} \\ \mathbf{B} \\ \mathbf{C}\end{gathered}$

- We can rewrite coordinates more efficiently!
- Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
- New basis vectors: [1 2 1] [-2 -3 1]
- Then A has new coordinates: [1 0]. B: [0 1], C: [11]
- Notice: We reduced the number of coordinates!

SVD - Definition

$A_{[m \times n]}=U_{[m \times r]} \Sigma_{[r \times r]}\left(V_{[n \times r]}\right)^{\top}$

- A: Input data matrix
- $m \times n$ matrix (e.g., m documents, n terms)
- U: Left singular vectors
- $m \times k$ matrix (m documents, r concepts)
- Σ : Singular values
- $r \times r$ diagonal matrix (strength of each 'concept') (r : rank of the matrix A)
- V: Right singular vectors
- $n \times r$ matrix (n terms, r concepts)

Outline

- ML vs CTA vs CL
- Recap
- Word Representations
- One hot
- Co-occurrence matrix (\& SVD)
- Embeddings

Word Representations

Document-Term Matrix
 DMT:

- Rows represent a document
- Columns represent a word
- Values represent some feature of word w_{i} in document d_{j}

$$
\begin{array}{lllllllll}
w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \ldots & \ldots & \ldots & w_{v}
\end{array}
$$

Document-Term Matrix

We represent each word in our vocabulary as ... an index in our matrix

One Hot Vector

- Unique vector for each word
- n -1 elements in vector are 0
- One element in vector is 1

One hot vector example

a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field

One hot vector example

a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field

a	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
pioneer	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
science	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
\ldots	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
advocate	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$

One hot vector example

a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field

a	1	\ldots	0	\ldots	0	\ldots	0
pioneer	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
science	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
\ldots	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
advocate	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$

One hot vector example

a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field

a	1	\ldots	0	\ldots	0	\ldots	0
pioneer	0	\ldots	1	\ldots	0	\ldots	0
science	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
\ldots	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
advocate	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$

One hot vector example

a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field

a	1	\ldots	0	\ldots	0	\ldots	0
pioneer	0	\ldots	1	\ldots	0	\ldots	0
science	0	\ldots	0	\ldots	1	\ldots	0
\ldots	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$
advocate	$?$	\ldots	$?$	\ldots	$?$	\ldots	$?$

One hot vector example

 a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field| a | 1 | \ldots | 0 | \ldots | 0 | \ldots | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pioneer | 0 | \ldots | 1 | \ldots | 0 | \ldots | 0 |
| science | 0 | \ldots | 0 | \ldots | 1 | \ldots | 0 |
| \ldots | 0 | \ldots | 0 | \ldots | 0 | \ldots | 1 |
| advocate | 0 | \ldots | 0 | \ldots | 0 | \ldots | 1 |

One hot vector example

 a pioneer of computer science for work combining statistics and linguistics, and an advocate for women in the field| | a | \ldots | pioneer | \ldots | science | \ldots | advocate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | 1 | \ldots | 0 | \ldots | 0 | \ldots | 0 |
| pioneer | 0 | \ldots | 1 | \ldots | 0 | \ldots | 0 |
| science | 0 | \ldots | 0 | \ldots | 1 | \ldots | 0 |
| \ldots | 0 | \ldots | 0 | \ldots | 0 | \ldots | 1 |
| advocate | 0 | \ldots | 0 | \ldots | 0 | \ldots | 1 |

Issues with one-hot vector

- Sparse
- Lots of 0's
- Very big
- As big as vocabulary
- Doesn't capture any meaning of the word
- DTM actually captures some aspects of the documents' meaning
- We'd like the same for our word representations

How do we figure out the meaning of a new word?

Meaning from Context: Tezguino

A bottle of tezgüino is on the table.
Everyone likes tezgüino.
Tezgüino makes you drunk.
We make tezgüino out of corn.

Meaning from Context: Tezguino

A bottle of tezgüino is on the table. Everyone likes tezgüino. Tezgüino makes you drunk. We make tezgüino out of corn.

Distributional Hypothesis

words with similar contexts
share similar meanings
(Harris, 1954)
you shall know a word by the company it keeps
(Firth 1957)

Meaning from Context: Hash

Message M (arbitrary length)

Hash Value h
(fixed length)

Meaning from Context: Hash

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

	on	hands	hash	price	actually	area	my
on							
hands							
hash							
price							
actually							
area							
my							

v X v matrix

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

		on	hands	hash	price	actually	area	my
	on							
	hands							
Window	hash							
size of 2	price							
	actually							
	area							
	my						????	

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

	on	hands	hash	price	actually	area	my
on							
hands							
hash							
price							
actually							
area							
my							
mater							

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

	on	hands	hash	price	actually	area	my
on							
hands							
hash							
price							
actually							
area							
my							
my							

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

	on	hands	hash	price	actually	area	my
on							
hands							
hash							
price							
actually							
area							
my							
my							

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

		on	hands	hash	price	actualy	area	my
	on							
	hands							
Window	hash							
size of 2	price			????				
	actualy							
	area							2
	my						2	

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

		on	hands	hash	price	actually	area	my
	on							
	hands							
Window	hash							
	pize of 2	price			1			
	actually							
	area							
	my							2

Co-occurrence matrix

about to get my hands on some top shelf hash but I have no idea what the hash price is in my area. There is no one that sells hash in my area actually.

Window

 size of 2| | on | hands | hash | price | actually | area | my |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| on | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| hands | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| hash | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| price | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| actually | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| area | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| my | 0 | 1 | 1 | 0 | 1 | 2 | 0 |

Issues with co-occurrence matrix

- Large dimensions
- Still sparse
- Not as much as one-hot but still sparse
- Is meaning captured?
- Solution:
- Dimensionality Reduction to the rescue

Singular Value Decomposition Document Term Matrix

M
n X V
$=\quad \mathrm{U}$
$\mathrm{n} x \mathrm{k}$

S
kxk

V
kxv

Singular Value Decomposition Co-occurrence matrix

$$
\underset{v \times v}{M}
$$

Singular Value Decomposition Co-occurrence matrix

Word Embeddings

Initialize random vectors

Embedding

This is a look-up table where each row indicates the list of numbers for a word

Update word embeddings by reading a corpus

Embedding

Example

Posted by u/SaltyPositive 1 year ago

Ziip Disposable Device

Where are all the ziip device posts at?!I recently bought the ziip refilled disposable device and I'm so so unsure on what to make of it, because there is NO hit, but the cloud is dense upon exhaling, but I don't feel a rush and I'm not sure how hard you have to pull(????) it really doesn't feel like I'm pulling at anything at all. I'm posting here because I bought this pod for 7 cad as a substitute for the Juul ones but don't know if I just got a faulty device? Any other similar experiences?

Ziip Disposable Device

Where are all the ziip device posts at?!I recently bought the [? Jefilled disposable device and I'm so so unsure on what to make ofit, because threre is No hit, but the cloud is dense upon exhaling, but I don't feel a rush and I'm not sure how hard you have to pull(????) it really doesn't feel like I'm pulling at anything at all. I'm posting here because I bought this pod for 7 cad as a substitute for the Juul ones but don't know if I just got a faulty device? Any other similar experiences?

Continuous Bag of Words (CBOW)

(Mikolov et al. 2013)

- Predict a word given its context

- Ziip Disposable Device

Where are all the ziip device posts at?!I recently bought the ziip refilled disposable device and I'm so so unsure on what to make ofit, beczuse there is NO hit, but the cloud is dense upon exhaling, but I don't feel a rush and I'm not sure how hard you have to pull(????) it really doesn't feel like I'm pulling at anything at all. I'm posting here because I bought this pod for 7 cad as a substitute for the Juul ones but don't know if I just got a faulty device? Any other similar experiences?

Ziip Disposable Device

 cloud is dense upon exhaling, but I don't feel a rush and I'm not sure how hard you have to pull(????) it really doesn't feel like I'm pulling at anything at all. I'm posting here because I bought this pod for 7 cad as a substitute for the Juul ones but don't know if I just got a faulty device? Any other similar experiences?

Skip-Gram

- Predict the context around a word

INPUT PROJECTION OUTPUT

Updated Word Embeddings as byproduct of training

Embedding

After training the neural network, we have updated values in our look-up table

Word Embeddings

a	0.4420	\ldots	0.167	\ldots	0.4838	\ldots	0.2314
pioneer	0.2401	\ldots	0.3732	\ldots	0.9653	\ldots	0.6366
science	0.7532	\ldots	0.3245	\ldots	0.5893	\ldots	0.7772
\ldots	0.2032	\ldots	0.5792	\ldots	0.9302	\ldots	0.4924
advocate	0.3424	\ldots	0.2944	\ldots	0.3923	\ldots	0.3492

Word2vec: how to learn vectors

- Given the set of positive and negative training instances, and an initial set of embedding vectors
- The goal of learning is to adjust those word vectors such that we:
- Maximize the similarity of the target word, context word pairs ($w, c_{\text {pos }}$) drawn from the positive data
- Minimize the similarity of the ($w, c_{\text {neg }}$) pairs drawn from the negative data.

Word Embeddings Preserve Meaning

Verb tense

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

- Ask "Paris : France :: Tokyo : x"
- $x=$ Japan
- Ask "father : doctor :: mother : x"
- $\mathrm{x}=$ nurse
- Ask "man : computer programmer :: woman : x"
- $\mathrm{x}=$ homemaker

Algorithms that use embeddings as part of e.g., hiring searches for programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences 115(16), E3635-E3644.

- Compute a gender or ethnic bias for each adjective: e.g., how much closer the adjective is to "woman" synonyms than
"man" synonyms, or names of particular ethnicities
- Embeddings for competence adjective (smart, wise, brilliant, resourceful, thoughtful, logical) are biased toward men, a bias slowly decreasing 1960-1990
- Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre) were biased toward Asians in the 1930s, bias decreasing over the $20^{\text {th }}$ century.
- These match the results of old surveys done in the 1930s

