

Announcements (1/2)

- Office Hours:
- Thursdays 3-4:30pm
- HWOO late deadline tonight
- Reading01 late deadline tonight
- HW01 due Monday 01/30
- Based on Monday's lecture
- Reading02 released tonight, due Monday 01/30

Announcements (2/2)

- Monday 01/30 lecture
- Lecture will start late, time tbd
- Will use lab time for lecture too

Outline

- LMs: smoothing, perplexity, <s>
- Document Representations
- Document-Term Matrix
- BoW
- Linear Algebra:
- Vectors
- Vector similarity
- tf-idf

The intuition of smoothing (from Dan Klein)

- When we have sparse statistics:
$P(w \mid$ denied the)
3 allegations
2 reports
1 claims
1 request
7 total

- Steal probability mass to generalize better
$\mathrm{P}(\mathrm{w} \mid$ denied the $)$
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Raw bigram probabilities

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Laplacian bigram probabilities $P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i}, w_{i-1}\right)+1}{c\left(w_{i-1}\right)+V}$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Evaluating Language Models

Perplexity

Perplexity $\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=$

$$
\begin{aligned}
& =P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{\frac{1}{n}} \\
& =\sqrt[n]{\frac{1}{P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)}}
\end{aligned}
$$

$P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$ depends on the LM we use

The lower the perplexity, the better the model

Perplexity - implementation

Perplexity $\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=$

$$
\begin{aligned}
& =P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{\frac{1}{n}} \\
& =\sqrt[n]{\frac{1}{P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)}} \\
& =e^{\frac{1}{n} \sum_{i=1}^{n}-\log P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)}
\end{aligned}
$$

def perplexity(self, sentence, method):
II II II
Compute
II II
return $2.0 * *$ ($-1.0 *$ mean([method(context, word) for context, word in \} bigrams(self.tokenize_and_censor(sentence))]))
exponentiated average negative log-likelihood

Perplexity

Perplexity $\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=$

$$
=\sqrt[n]{\frac{1}{P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)}}
$$

The lower the perplexity, =>
the higher the probability =>
the model is less surprised by the text

This is based on $P(M \mid T)$, i.e. we fit the model based on the training data
"less surprised" - based on just the training data, how shocked is the model when it sees $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$

Perplexity

$$
=\sqrt[n]{\frac{1}{P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)}}
$$

What we generally use for word sequence is the entire sequence of words in some test set. Since this sequence will cross many sentence boundaries, we need to include the begin- and end-sentence markers in the probability computation. We also need to include the end-of-sentence marker (but not the beginning-of-sentence marker) in the total count of word tokens N .

Training set: "a a b"

We add <s> and </s> to our example:
"<s> a a b </s>"

Unigram probabilities:

$$
P(<s>) \quad P(a) \quad P(b) \quad P(</ s>)
$$

Training set: "a a b"

We add <s> and </s> to our example:
"<s> a a b </s>"

Unigram probabilities:

$$
\begin{array}{cccc}
P(<s>) & P(a) & P(b) & P(</ s>) \\
.2 & .4 & .2 & .2
\end{array}
$$

Training set: "a a b"

We add <s> and </s> to our example:
"<s > <s> a a b </s>"

Bigram probabilities:

$$
\begin{array}{llll}
P(<s>\mid<s>) & P(a) \mid<s> & P(b \mid<s>) & P(</ s>\mid<s>) \\
P(<s>\mid a) & P(a \mid a) & P(b \mid a) & P(</ s>\mid a) \\
P(<s>\mid b) & P(a \mid b) & P(b \mid b) & P(</ s>\mid a b) \\
P(<s>\mid</ s>) & P(a) \mid</ s> & P(b \mid</ s>) & P(</ s>\mid</ s>)
\end{array}
$$

Training set: "a a b"

We add $\langle s>$ and </s> to our example:
"<s > <s> a a b </s>"

Unigram probabilities now:

$$
P(<s>) \quad P(a) \quad P(b) \quad P(</ s>)
$$

Training set: "a a b"

Dont treat $\mathrm{c}(\langle\mathrm{s}\rangle$) as a regular token
"<s> <s> a a b </s>"

Unigram probabilities:

$$
P(<s>)
$$

$$
P(a)
$$

$$
P(b)
$$

$$
P(</ s>)
$$

Now: .33
.33
.1667 .1667
Before: . 2
. 4
. 2
. 2

Training set: "a a b"

Dont treat $\mathrm{c}(\langle\mathrm{s}\rangle$) as a regular token

"<s> <s> a a b </s>"

Unigram probabilities:

$$
\begin{equation*}
P(<s\rangle) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
P(</ s>) \tag{b}
\end{equation*}
$$

Correct:
. 5
.25
.25

Why not include <s> in our counts?

Why do we include <s>?

Why do we include </s>?

Generating text perspective?

What happens if we use unigram to generate text?

Outline

- LMs: smoothing, perplexity, <s>, MLE vs EM
- Document Representations
- Document-Term Matrix
- BoW
- Linear Algebra:
- Vectors
- Vector similarity
- tf-idf

Maximum Likelihood Estimates

- The maximum likelihood estimate
- of some parameter of a model M from a training set T
- maximizes the likelihood of the training set T given the model M

Parameters are:
n-gram probabilities

Approach 2 - Combine the 'grams

Context specific weights

Jelinek-Mercer smoothing

 (1980)Lambdas are parameters too

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

Approach 2 - Combine the 'grams

Context specific weights

Lambdas are parameters too

How do we decide what values our lambdas should be?

Approach 2 - Combine the 'grams

Context specific weights

Lambdas are parameters too

How do we decide what values our lambdas should be?

Split our data into train and evaluation sets try different lambdas, compare model's perplexity on the evaluation set

Outline

- LMs: smoothing, perplexity, <s>
- Document Representations
- Document-Term Matrix
- BoW
- Linear Algebra:
- Vectors
- Vector similarity
- tf-idf

Recap so far

The first class was all about

Recap so far

The first class was all about counting

Recap so far

The first class was all about counting words
$2^{\text {nd }}$ class was about the power of counting words.

By counting words we can

Recap so far

The first class was all about counting words
$2^{\text {nd }}$ class was about the power of counting words.

By counting words we can \qquad
learn about language
generate language
categorize language

Documents \& Corpora

Terminology - Corpus

- Corpus:
- A collection of documents
- Corpora - plural of corpus

Terminology - Document

- Document:
- Often unit of text of interest (dependent on RQ)
- Often represents one data point
- Examples:
- Book
- Chapter
- News article
- Tweet
- Product Review
-

How do we represent documents?

Dictionaries of word counts

Often called Bag of Words

Bag of Words - Start with document

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.

Bag of Words - Break document into words

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.

Bag of Words - compute word counts

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.

('the', 8), (',', 5),
('very', 4),
('.', 4),
('who', 4),
('and', 3),
('good', 2),
('it', 2),
('to', 2),
('a', 2),
('for', 2),
('can', 2),
('this', 2),
('of', 2),
('drama', 1),
('although', 1),
('appeared', 1),
('have', 1),
('few', 1),
('blank', 1)

Bag of Words

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.

Document vectors

Document vectors

- Vector is just an array of numbers

- Index represents a word
- Value represents

Document vectors

- Vector is just an array of numbers

- Index represents a word
- Value represents something about that word
- For now, unigrams

Outline

- LMs: smoothing, perplexity, <s>
- Document Representations
- Document-Term Matrix
- BoW
- Linear Algebra:
- Vectors
- Vector similarity
- tf-idf

Vectors

Physics:
arrow pointing in space
it has a length, and a direction its pointing
CS:
ordered lists of numbers number of dimensions is size of the list
Math:
we can add them together
we can multiply them by a number

Document as a Vector

Vocabulary is \{" g ", "t"\}

Document as a Vector

Document as a Vector

Which two are the most similar?

Vector similarity

Dot product of \mathbf{a} and \mathbf{b} :

$$
\boldsymbol{a} * \boldsymbol{b}=\sum_{i}^{n} a_{i} b_{i}
$$

$$
\begin{aligned}
& =\# g_{\text {blue }} * \# g_{\text {orange }}+\# t_{\text {blue }} * \# t_{\text {orange }} \\
& =5 * 3+1 * 3
\end{aligned}
$$

$15 * 3$
45

Issues with dot product

$$
\boldsymbol{a} * \boldsymbol{b}=\sum_{i}^{n} a_{i} b_{i}
$$

Issues with dot product

$\boldsymbol{a} * \boldsymbol{b}=\sum_{i}^{n} a_{i} b_{i}$ Which is most similar:
(brown, yellow), (brown, orange), or (yellow, orange)?

Issues with dot product

$\sum^{n} \quad$ Which is most similar:
(brown, yellow), (brown, orange), or (yellow, orange)?

Issues with dot product

$\boldsymbol{a} * \boldsymbol{b}=\sum_{i}^{n} a_{i} b_{i}$
More weight given to longer vectors (documents)

Solution - normalize by length

 $\frac{a * b}{|a||b|}$

How to compute the length of a vector

How long is
gttttttttt

Option 1:
Just add the number of g's and the number of t's

In terms of documents, its just length of document

How to compute the length of a vector

What's the length of blue with option 1 ?

$$
-1+1=0
$$

How to compute the length of a vector

Option 2: add absolute values

$$
|-1|+|1|=2
$$

How to compute the length of a vector

Option 3: add squared values, then take square root
$-1^{2}+1^{2}=\sqrt{2}$

Cosine similarity

$\frac{\boldsymbol{a} * \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}=\cos \theta$

Normalized dot product is the same as the cosine of the angle between the vectors

Cosine Distance/Similarity

Document vectors

Finding most similar documents?

CTA examples of finding most similar documents

What did we use to represent documents?

Document Matrix

DIMENSIONS
Slide taken from Dirk Hovy

Recap so far

The first class was all about counting words
$2^{\text {nd }}$ class was about the power of counting words.

By counting words we can \qquad
learn about language
generate language
categorize language
group documents

What to count? How to count?

Next lecture
HWO2

