

#### CS 383 – Computational Text Analysis

#### Lecture 3 Document Representation

Adam Poliak 01/25/2023

Slides adapted from Dan Jurafsky, Dirk Hovy

## Announcements (1/2)

- Office Hours:
  - Thursdays 3-4:30pm
- HW00 late deadline tonight
- Reading01 late deadline tonight
- HW01 due Monday 01/30
  - Based on Monday's lecture
- Reading02 released tonight, due Monday 01/30

## Announcements (2/2)

- Monday 01/30 lecture
  - Lecture will start late, time tbd
  - Will use lab time for lecture too

## Outline

- LMs: smoothing, perplexity, <s>
- Document Representations
  - Document-Term Matrix
  - BoW
- Linear Algebra:
  - Vectors
  - Vector similarity
- tf-idf

#### The intuition of smoothing (from Dan Klein)

allegations

reports

claims

equest

- When we have sparse statistics:
  - P(w | denied the) 3 allegations
  - 2 reports
  - 1 claims
  - 1 request
  - 7 total
- Steal probability mass to generalize better
  - P(w | denied the) 2.5 allegations 1.5 reports 0.5 claims 0.5 request 2 other 7 total



attack

man

outcome

## Raw bigram probabilities

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

Laplacian bigram probabilities  $P_{Add-1}(w_i | w_{i-1}) = \frac{c(w_i, w_{i-1}) + 1}{c(w_{i-1}) + V}$ 

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

## Evaluating Language Models

#### Perplexity

$$\begin{aligned} Perplexity & (w_1, w_2, w_3, \dots, w_n) &= \\ &= P(w_1, w_2, w_3, \dots, w_n)^{\frac{1}{n}} \\ &= \sqrt[n]{\frac{1}{P(w_1, w_2, w_3, \dots, w_n)}} \end{aligned}$$

 $P(w_1, w_2, w_3, \dots, w_n)$  depends on the LM we use

The lower the perplexity, the better the model

#### Perplexity - implementation

$$\begin{aligned} Perplexity (w_1, w_2, w_3, \dots, w_n) &= \\ &= P(w_1, w_2, w_3, \dots, w_n)^{\frac{1}{n}} \\ &= \sqrt[n]{\frac{1}{P(w_1, w_2, w_3, \dots, w_n)}} \\ &= e^{\frac{1}{n} \sum_{i=1}^n -\log P(w_1, w_2, w_3, \dots, w_n)} \end{aligned}$$

#### exponentiated average negative log-likelihood

## Perplexity

$$\begin{aligned} Perplexity \ (w_{1}, w_{2}, w_{3}, \dots, w_{n}) \ = \\ &= \sqrt[n]{\frac{1}{P(w_{1}, w_{2}, w_{3}, \dots, w_{n})}} \end{aligned}$$

The lower the perplexity, => the higher the probability => the model is less surprised by the text

This is based on P(M | T), i.e. we fit the model based on the training data

"less surprised" – based on just the training data, how shocked is the model when it sees  $w_1, w_2, w_3, \dots, w_n$ 

$$= \sqrt[n]{\frac{1}{P(w_1, w_2, w_3, ..., w_n)}}$$

What we generally use for word sequence is the entire sequence of words in some test set. Since this sequence will cross many sentence boundaries, we need to include the begin- and end-sentence markers in the probability computation. We also need to include the end-of-sentence marker (but not the beginning-of-sentence marker) in the total count of word tokens N.

#### We add <s> and </s> to our example: "<s> a a b </s>"

Unigram probabilities:

 $P(\langle s \rangle)$  P(a) P(b)  $P(\langle s \rangle)$ 

#### We add <s> and </s> to our example: "<s> a a b </s>"

#### Unigram probabilities:

| $P(\langle s \rangle)$ | P(a) | P(b) | P() |
|------------------------|------|------|-----|
| .2                     | .4   | .2   | .2  |

#### We add <s> and </s> to our example: "<s > <s> a a b </s>"

**Bigram probabilities:** 

 P(< s > | < s >) P(a) | < s > P(b | < s >) P(</s > | < s >) 

 P(< s > | a) P(a | a) P(b | a) P(</s > | a) 

 P(< s > | b) P(a | b) P(b | b) P(</s > | ab) 

 P(< s > | </s >) P(a) | </s > P(b | </s >) P(</s > | </s >) 

#### We add <s> and </s> to our example: "<s > <s> a a b </s>"

#### Unigram probabilities now:

$$P(\langle s \rangle)$$
  $P(a)$   $P(b)$   $P(\langle s \rangle)$ 



#### Unigram probabilities:

|        | $P(\langle s \rangle)$ | P(a) | P(b)  | P()           |
|--------|------------------------|------|-------|---------------|
| Now:   | .33                    | .33  | .1667 | .166 <u>7</u> |
| Before | : .2                   | .4   | .2    | .2            |



#### Unigram probabilities:

|         | $P(\langle s \rangle)$ | P(a) | P(b) | P() |
|---------|------------------------|------|------|-----|
| Correct | : -                    | .5   | .25  | .25 |

## Why not include <s> in our counts?

Why do we include <s>?

Why do we include </s>?

Generating text perspective?

What happens if we use unigram to generate text?

## Outline

- LMs: smoothing, perplexity, <s>, MLE vs EM
- Document Representations
  - Document-Term Matrix
  - BoW
- Linear Algebra:
  - Vectors
  - Vector similarity
- tf-idf

## Maximum Likelihood Estimates

- The maximum likelihood estimate
  - of some parameter of a model M from a training set T
  - maximizes the likelihood of the training set T given the model M

Parameters are:

n-gram probabilities

#### Approach 2 – Combine the 'grams

Context specific weights



Lambdas are parameters too

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1}) \\
+\lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1}) \\
+\lambda_3(w_{n-2}^{n-1})P(w_n)$$

## Approach 2 – Combine the 'grams

Context specific weights

Lambdas are parameters too



How do we decide what values our lambdas should be?

## Approach 2 – Combine the 'grams

Context specific weights

Lambdas are parameters too



How do we decide what values our lambdas should be?

Split our data into train and evaluation sets

try different lambdas, compare model's perplexity on the evaluation set

## Outline

- LMs: smoothing, perplexity, <s>
- Document Representations
  - Document-Term Matrix
  - BoW
- Linear Algebra:
  - Vectors
  - Vector similarity
- tf-idf

The first class was all about \_\_\_\_

The first class was all about counting \_\_\_\_\_

The first class was all about counting words

2<sup>nd</sup> class was about the power of counting words.

By counting words we can \_\_\_\_\_

The first class was all about counting words

2<sup>nd</sup> class was about the power of counting words.

By counting words we can \_\_\_\_\_ learn about language generate language categorize language

## **Documents & Corpora**

## Terminology - Corpus

#### • Corpus:

- A collection of documents
- Corpora plural of corpus



## Terminology - Document

#### • Document:

- Often unit of text of interest (dependent on RQ)
- Often represents one data point
- Examples:
  - Book
  - Chapter
  - News article
  - Tweet
  - Product Review

• ....

#### How do we represent documents?

#### Dictionaries of word counts



#### Often called **Bag of Words**

## Bag of Words – Start with document

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their guarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.

# Bag of Words – Break document into words

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.



## Bag of Words – compute word counts

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.





('the', 8), (',', 5), ('very', 4), ('.', 4), ('who', 4), ('and', 3), ('good', 2), ('it', 2), ('to', 2), ('a', 2), ('for', 2), ('can', 2), ('this', 2), ('of', 2), ('drama', 1), ('although', 1), ('appeared', 1), ('have', 1), ('few', 1), ('blank', 1)

....

## Bag of Words

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.



('the', 8), (',', 5), ('very', 4), ('.', 4), ('who', 4), ('and', 3), ('good', 2), ('iť, 2), ('to', 2), ('a', 2), ('for', 2), ('can', 2), ('this', 2), ('of', 2), ('drama', 1), ('although', 1), ('appeared', 1), ('have', 1), ('few', 1), ('blank', 1) . . . . .

• Vector is just an array of numbers



- Index represents a word
- Value represents ....

• Vector is just an array of numbers



- Index represents a word
- Value represents something about that word
  - For now, unigrams

### Outline

- LMs: smoothing, perplexity, <s>
- Document Representations
  - Document-Term Matrix
  - BoW
- Linear Algebra:
  - Vectors
  - Vector similarity
- tf-idf

### Vectors

**Physics:** 



arrow pointing in space it has a length, and a direction its pointing CS:

ordered lists of numbers number of dimensions is size of the list Math:

> we can add them together we can multiply them by a number



### Document as a Vector

Vocabulary is {"g", "t"}



### Document as a Vector





### Document as a Vector





#### Which two are the most similar? tttttgggggg gggggg gggggt gtttttttt tttggg 10 8 b <sup>6</sup> 4 2 0 2 8 0 4 6 10

а

### Vector similarity

Dot product of **a** and **b**:

$$\boldsymbol{a} * \boldsymbol{b} = \sum_{i}^{n} a_{i} b_{i}$$

~~



$$#g_{blue} * #g_{orange} + #t_{blue} * #t_{orange}$$
  
5 \* 3 + 1 \* 3  
15 \* 3





 $a * b = \sum_{i}^{n} a_{i}b_{i}$  Which is most similar: (brown, yellow), (brown, orange), or (yellow, orange)?







51

# Solution – normalize by length $\frac{a * b}{|a||b|}$





#### Option 1:

Just add the number of g's and the number of t's

In terms of documents, its just length of document

# How to compute the length of a vector

### What's the length of blue with option 1?



# How to compute the length of a vector

Option 2: add absolute values

$$|-1| + |1| = 2$$



# How to compute the length of a vector

Option 3: add squared values, then take square root



### Cosine similarity

 $\frac{a*b}{|a||b|} = \cos\theta$ 

Normalized dot product is the same as the cosine of the angle between the vectors Cosine Distance/Similarity





## Finding most similar documents?

### CTA examples of finding most similar documents

What did we use to represent documents?



### Document Matrix



### Recap so far

The first class was all about counting words

2<sup>nd</sup> class was about the power of counting words.

By counting words we can \_\_\_\_\_ learn about language generate language categorize language group documents

## What to count? How to count?

Next lecture

HW02