
CS 383 – Computational
Text Analysis

Lecture 2
Language Modeling

Adam Poliak
01/23/2023

Slides adapted from Philipp Koehn, Jordan Boyd-Graber,
Jason Eisner, Dan Jurafsky

Announcements

• Office Hours:
• Thursdays 3-4:30pm

• There are a few I will reschedule
• After lecture on Monday

• HW00 due tonight
• Reading01 due tonight

• HW01 released tonight, due Monday 01/30
• Based on today’s lecture

• Reading02 released tonight, due Monday 01/30

Outline

• NLP/HLT/CTA
• Define LMs

• Motivate LMs, applications
• Probability review

• Joint
• Conditional
• Chain rule

• N-grams
• Computing LMs

• MLE
• Smoothing

• Evaluating LMs

Language Model

Answers the question(s):
• How likely is a piece of text a good example of the

language?
• How likely is a given piece of text to be seen in the

wild?

“assigns probabilities to sequences of words” -
textbook

Why do we want probabilities to
sequences of words? What can we do
with probabilities of sequences of words?
Classification:

LanguageID
Text Categorization
Authorship attribution

Predict next word
Texting on phone

Autocorrect/Spelling Correction

Machine Translation

Language Generation

600.465 – Intro to NLP – J.
Eisner

6

Contextual Spelling Correction

• Which is most probable?
1. … I think they’re okay …
2. … I think there okay …
3. … I think their okay …

• Which is most probable?
1. … by the way, are they’re likely to …
2. … by the way, are there likely to …
3. … by the way, are their likely to …

600.465 – Intro to NLP – J. Eisner

7

Machine Translation
good English?
(n-gram)

good match
to French?

Jon appeared in TV.
Appeared on Jon TV.
In Jon appeared TV.
Jon is happy today.
Jon appeared on TV.
TV appeared on Jon.
TV in Jon appeared.
Jon was not happy.

600.465 – Intro to NLP – J. Eisner

8

Machine Translation
good English?
(n-gram)

good match
to French?

Jon appeared in TV. ü

Appeared on Jon TV.
In Jon appeared TV. ü

Jon is happy today. ü

Jon appeared on TV. ü ü

TV appeared on Jon. ü

TV in Jon appeared.
Jon was not happy. ü

600.465 – Intro to NLP – J. Eisner

9

Language generation
• Choose randomly among outputs:

• Visitant which came into the place where it will be Japanese has
admired that there was Mount Fuji.

• Top 10 outputs according to bigram probabilities:
• Visitors who came in Japan admire Mount Fuji.
• Visitors who came in Japan admires Mount Fuji.
• Visitors who arrived in Japan admire Mount Fuji.
• Visitors who arrived in Japan admires Mount Fuji.
• Visitors who came to Japan admire Mount Fuji.
• A visitor who came in Japan admire Mount Fuji.
• The visitor who came in Japan admire Mount Fuji.
• Visitors who came in Japan admire Mount Fuji.
• The visitor who came in Japan admires Mount Fuji.
• Mount Fuji is admired by a visitor who came in Japan.

How do we compute probability
of a sequence of words?
Today’s main topic!

P(“I hope to learn more about text analysis tools
and how to use them”) = ????

Approach 0: Look up how many times we’ve
seen this sentence before?

Issue with Approach 0

Most sentences have never been seen before

Outline

• NLP/HLT/CTA
• Define LMs

• Motivate LMs, applications
• Probability review

• Joint
• Conditional
• Chain rule

• N-grams
• Computing LMs

• MLE
• Smoothing

• Evaluating LMs

Probability side bar

P(“I hope to learn more about text analysis tools and how
to use them”)

What type of probability is this?
Joint probability

What's the probability of event A and
event B of both happening

Event A = “I”
Event B = “hope”
Event C = “learn”
…

Probability side bar: Joint

𝑃 𝐴, 𝐵 : Probability of event A and event B both
happening

𝑃 𝐴, 𝐵 ≤ 𝑃 𝐴
𝑃 𝐴, 𝐵 ≤ 𝑃 𝐵

𝑃 𝐴, 𝐵 = 𝑃 𝐴 ∗ 𝑃 𝐵 𝐴) = 𝑃(𝐵) ∗ 𝑃(𝐴 | 𝐵)

Probability side bar: Conditional

𝑃 𝐴 | 𝐵 : Probability of event A happening if we
know event B is happening

𝑃 𝐴 | 𝐵 = ,𝑃 𝐴, 𝐵
𝑃(𝐵)

Therefore,

𝑃 𝐴 , 𝐵 = 𝑃 𝐴 𝐵) ∗ 𝑃(𝐵)

Probability side bar: more variables

𝑃 𝐴, 𝐵, 𝐶, 𝐷 :
Probability of A and B and C and D happening

Recall, 𝑃 𝐴, 𝐵 = 𝑃(𝐴)𝑃 𝐵 𝐴)

(Probability of A and B) and C and D happening

𝑃 𝐴 𝑃 𝐵 𝐴) and	C	and	D	happening

𝑃 𝐴 𝑃 𝐵 𝐴) 𝑃 𝐶 𝐴, 𝐵) and	D	happening

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴) 𝑃 𝐶 𝐴, 𝐵)𝑃(𝐷|𝐴, 𝐵, 𝐶)

Probability Chain Rule

𝑃 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 =
𝑃(𝑥1)𝑃(𝑥2|𝑥1)𝑃(𝑥3|𝑥1, 𝑥2)…𝑃(𝑥𝑛|𝑥1, … , 𝑥𝑛 − 1)

More compactly
𝑃 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 =

∏! 𝑃 𝑥! 𝑥", 𝑥#, … , 𝑥!$")

Back to language

What are our random variables?
The words in our sentence

Probability of 𝑤", 𝑤#, … , 𝑤% =
∏% 𝑃 𝑤% 𝑤", 𝑤#, … , 𝑤%$")

P(“I hope to learn more about text
analysis tools and how to use them”)
𝑃 “𝐼”
∗ 𝑃 “ℎ𝑜𝑝𝑒 𝐼”)
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒”
∗ 𝑃 “𝑙𝑒𝑎𝑟𝑛” ”𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜”)
∗ 𝑃 “𝑚𝑜𝑟𝑒” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛” ∗ 𝑃 “𝑎𝑏𝑜𝑢𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒”
∗ 𝑃(“𝑡𝑒𝑥𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡”
∗ 𝑃 ”𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡”)
∗ 𝑃(“𝑡𝑜𝑜𝑙𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
∗ 𝑃 “𝑎𝑛𝑑” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠”)
∗ 𝑃(“ℎ𝑜𝑤” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑”
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑 ℎ𝑜𝑤”
…

Compute P(“I”)

𝑃 “𝐼”
∗ 𝑃 “ℎ𝑜𝑝𝑒 𝐼”)
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒”
∗ 𝑃 “𝑙𝑒𝑎𝑟𝑛” ”𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜”)
∗ 𝑃 “𝑚𝑜𝑟𝑒” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛” ∗ 𝑃 “𝑎𝑏𝑜𝑢𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒”
∗ 𝑃(“𝑡𝑒𝑥𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡”
∗ 𝑃 ”𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡”)
∗ 𝑃(“𝑡𝑜𝑜𝑙𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
∗ 𝑃 “𝑎𝑛𝑑” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠”)
∗ 𝑃(“ℎ𝑜𝑤” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑”
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑 ℎ𝑜𝑤”
…

Compute P(“I”)

𝑃 “𝐼” =
?@A%B(“C”)

D
(where N is the number of tokens)

Compute P(“hope” | “I”)

𝑃 “𝐼”
∗ 𝑃 “ℎ𝑜𝑝𝑒 𝐼”)
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒”
∗ 𝑃 “𝑙𝑒𝑎𝑟𝑛” ”𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜”)
∗ 𝑃 “𝑚𝑜𝑟𝑒” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛” ∗ 𝑃 “𝑎𝑏𝑜𝑢𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒”
∗ 𝑃(“𝑡𝑒𝑥𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡”
∗ 𝑃 ”𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡”)
∗ 𝑃(“𝑡𝑜𝑜𝑙𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
∗ 𝑃 “𝑎𝑛𝑑” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠”)
∗ 𝑃(“ℎ𝑜𝑤” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑”
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑 ℎ𝑜𝑤”
…

Compute P(“hope” | “I”)

𝑃 ”ℎ𝑜𝑝𝑒 | “𝐼” =

?@A%B(“C E@FG”)
?@A%B (“C”)

Compute P(“to” | “I hope”)

𝑃 “𝐼”
∗ 𝑃 “ℎ𝑜𝑝𝑒 𝐼”)
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒”
∗ 𝑃 “𝑙𝑒𝑎𝑟𝑛” ”𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜”)
∗ 𝑃 “𝑚𝑜𝑟𝑒” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛” ∗ 𝑃 “𝑎𝑏𝑜𝑢𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒”
∗ 𝑃(“𝑡𝑒𝑥𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡”
∗ 𝑃 ”𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡”)
∗ 𝑃(“𝑡𝑜𝑜𝑙𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
∗ 𝑃 “𝑎𝑛𝑑” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠”)
∗ 𝑃(“ℎ𝑜𝑤” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑”
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑 ℎ𝑜𝑤”
…

Compute P(“to” | “I hope”)

𝑃 ”𝑡𝑜 | “𝐼 ℎ𝑜𝑝𝑒” =

?@A%B(“C E@FG B@”)
?@A%B (“C E@FG”)

Compute P(“hope” | “I”)

𝑃 “𝐼”
∗ 𝑃 “ℎ𝑜𝑝𝑒 𝐼”)
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒”
∗ 𝑃 “𝑙𝑒𝑎𝑟𝑛” ”𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜”)
∗ 𝑃 “𝑚𝑜𝑟𝑒” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛” ∗ 𝑃 “𝑎𝑏𝑜𝑢𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒”
∗ 𝑃(“𝑡𝑒𝑥𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡”
∗ 𝑃 ”𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡”)
∗ 𝑃(“𝑡𝑜𝑜𝑙𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
∗ 𝑃 “𝑎𝑛𝑑” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠”)
∗ 𝑃(“ℎ𝑜𝑤” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑”
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑 ℎ𝑜𝑤”
…

Compute P(“tools” | “I hope to
learn more about text analysis”)
𝑃 “𝐼”
∗ 𝑃 “ℎ𝑜𝑝𝑒 𝐼”)
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒”
∗ 𝑃 “𝑙𝑒𝑎𝑟𝑛” ”𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜”)
∗ 𝑃 “𝑚𝑜𝑟𝑒” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛” ∗ 𝑃 “𝑎𝑏𝑜𝑢𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒”
∗ 𝑃(“𝑡𝑒𝑥𝑡” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡”
∗ 𝑃 ”𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡”)
∗ 𝑃(“𝑡𝑜𝑜𝑙𝑠” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
∗ 𝑃 “𝑎𝑛𝑑” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠”)
∗ 𝑃(“ℎ𝑜𝑤” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑”
∗ 𝑃(“𝑡𝑜” “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑜𝑜𝑙𝑠 𝑎𝑛𝑑 ℎ𝑜𝑤”
…

Compute P(“tools” | “I hope to
learn more about text analysis”)

𝑃 ”𝑡𝑜𝑜𝑙𝑠 | “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
=

?@A%B(“C E@FG B@ HGIJ% K@JG IL@AB BGMB I%IHNO!O B@@HO”)
?@A%B (“C E@FG B@ HGIJ% K@JG IL@AB BGMB I%IHNO!O”)

Compute P(“tools” | “I hope to
learn more about text analysis”)

𝑃 ”𝑡𝑜𝑜𝑙𝑠 | “𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠”
=

Same	issue	as	before

Solution

Markovian Assumption

• Simplifying assumption:

𝑃 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡𝑢𝑎𝑙)
≈ 𝑃 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡𝑢𝑎𝑙

• Or maybe

𝑃 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝐼 ℎ𝑜𝑝𝑒 𝑡𝑜 𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡𝑒𝑥𝑡𝑢𝑎𝑙)
≈ 𝑃 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑡𝑒𝑥𝑡𝑢𝑎𝑙

Andrei Markov

Slide from textbook slides

Markov Assumption in plain
language
Don’t worry too much about the past

Markov Assumption

In other words, we approximate each
component in the product by recent history

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Slide from textbook slides

So how far back should we go?

One word

Two words

Three words

5 words

So how far back should we go?

One word
Unigram

Two words
Bigram

Three words
Trigram

5 words
Five-gram

€

P(w1w2…wn) ≈ P(wi)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

n-grams

“a sequence of n words”

Alternatively:
“predictive model that assigns it a probability”

Outline

• NLP/HLT/CTA
• Define LMs

• Motivate LMs, applications
• Probability review

• Joint
• Conditional
• Chain rule

• N-grams
• Computing n-grams/LMs

• MLE
• Smoothing

• Evaluating LMs

Computing n-gram
probabilities

MLE: Maximum Likelihood
Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Computing bi-grams:

MLE: Maximum Likelihood
Estimate

𝑃 𝑤! 𝑤!$", 𝑤!$#) =
𝑐 (𝑤! , 𝑤!$", 𝑤!$#)
𝑐 (𝑤!$", 𝑤!$#)

Computing tri-grams:

𝑃 𝑤! 𝑤!$", 𝑤!$#) =
𝑐𝑜𝑢𝑛𝑡(𝑤! , 𝑤!$", 𝑤!$#)
𝑐𝑜𝑢𝑛𝑡(𝑤!$", 𝑤!$#)

Maximum Likelihood Estimates

• The maximum likelihood estimate
• of some parameter of a model M from a training set T
• maximizes the likelihood of the training set T given the model M

• Suppose the word “bagel” occurs 400 times in a corpus of a million words
• What is the probability that a random word from some other text will be

“bagel”?

• MLE estimate is 400/1,000,000 = .0004

• This may be a bad estimate for some other corpus
• But it is the estimate that makes it most likely that “bagel” will occur 400 times in

a million word corpus.

An example (bi-gram)

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

P(I | <s>) P(Sam | <s>) P(am | I)
P(<s> | Sam) P(Sam | am) P(do | I)

An example (bi-gram)

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

More examples:
Berkeley Restaurant Project
sentences

• can you tell me about any good cantonese restaurants close
by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that are

available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

Raw bigram probabilities

• Normalize by unigrams:

• Result:

Bigram estimates of sentence
probabilities

P(<s> I want english food </s>) =
P(I|<s>)
× P(want|I)

× P(english|want)
× P(food|english)
× P(</s>|food)

= .000031

What kinds of knowledge?

• P(english|want) = .0011
• P(chinese|want) = .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25

How did we learn this
knowledge?

How did we learn this
knowledge?
Just by counting!

Bigram estimates of sentence
probabilities

P(<s> I want english food because it is very very yummy </s>)
=
P(I|<s>)
× P(want|I)

× P(english|want)
× P(food|english)
…
× P(</s>|yummy)

Bigram estimates of sentence
probabilities

P(<s> I want english food because it is very very yummy </s>) =
P(I|<s>)
× P(want|I)

× P(english|want)
× P(food|english)
…
× P(</s>|yummy)

= .000000000000001

Practical Issues

•We do everything in log space
• Avoid underflow
• (also adding is faster than multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Example (tri-gram)

Data from Europarl

word c P(word | “the red”)

0.547

0.138

0.040

0.031

0.022

Example (tri-gram)

Data from Europarl

How many trigrams starting with “the red” appear in
Europarl?

225

word c P(word | “the red”)

cross 123 0.547

tape 31 0.138

army 9 0.040

card 7 0.031

, 5 0.022

Assuming a trigram model

𝑃 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛 < 𝑠 >< 𝑠 >) ∗ 𝑃 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 <
𝑠 > 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛) ∗ … 𝑃(𝑐𝑟𝑒𝑠𝑐𝑒𝑛𝑡 𝑡ℎ𝑒 𝑟𝑒𝑑 ∗ …

What’s probability of
“Strengthen capacities of the Red
Crescent Society of Kazakhstan”?

Assuming a trigram model

𝑃 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛 < 𝑠 >< 𝑠 >) ∗ 𝑃 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 <
𝑠 > 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛) ∗ … 𝑃(𝑐𝑟𝑒𝑠𝑐𝑒𝑛𝑡 𝑡ℎ𝑒 𝑟𝑒𝑑 ∗ …

What’s 𝑃(𝑐𝑟𝑒𝑠𝑐𝑒𝑛𝑡 𝑡ℎ𝑒 𝑟𝑒𝑑 ?

word c P(word | “the red”)

cross 123 0.547

tape 31 0.138

army 9 0.040

card 7 0.031

, 5 0.022

Assuming a trigram model

𝑃 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛 < 𝑠 >< 𝑠 >) ∗ 𝑃 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 <
𝑠 > 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛) ∗ … 𝑃(𝑐𝑟𝑒𝑠𝑐𝑒𝑛𝑡 𝑡ℎ𝑒 𝑟𝑒𝑑 ∗ …

What’s probability of
“Strengthen capacities of the Red
Crescent Society of Kazakhstan”?

word c P(word | “the red”)

cross 123 0.547

tape 31 0.138

army 9 0.040

card 7 0.031

, 5 0.022

Assuming a trigram model

𝑃 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛 < 𝑠 >< 𝑠 >) ∗ 𝑃 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 <
𝑠 > 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛) ∗ … . 0 ∗ …

What’s probability of
“Strengthen capacities of the Red
Crescent Society of Kazakhstan”?

word c P(word | “the red”)

cross 123 0.547

tape 31 0.138

army 9 0.040

card 7 0.031

, 5 0.022

Unknown n-grams

If we have an n-gram we haven’t seen before,
probability of the sequence is equal to ___0

Smoothing

The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

al
le
ga
tio

ns

re
po

rt
s

cl
ai
m
s

at
ta
ck

re
qu

es
t

m
an

ou
tc
om
e

…

al
le
ga
tio

ns

at
ta
ck

m
an

ou
tc
om
e

…al
le
ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

Add-1 smoothing
(aka Laplace smoothing)

Just add one to every count

MLE Estimate: 𝑃PQR 𝑤! 𝑤!$") =
?(S!,S!"#)
?(S!"#)

Add-1 Estimate: 𝑃UVV$" 𝑤! 𝑤!$") =
? S!,S!"# W"

?(S!"#)

Why is this Add-1 Estimate incorrect?
∑𝑃UVV$" 𝑤! 𝑤!$") = 1 isn’t true anymore

Add-1 smoothing
(aka Laplace smoothing)

Just add one to every count

MLE Estimate: 𝑃PQR 𝑤! 𝑤!$") =
?(S!,S!"#)
?(S!"#)

Add-1 Estimate: 𝑃UVV$" 𝑤! 𝑤!$") =
? S!,S!"# W"
? S!"# WX

Now
∑𝑃UVV$" 𝑤! 𝑤!$") = 1

Raw bigram probabilities

Laplacian bigram probabilities

Add-𝛼 smoothing

MLE Estimate: 𝑃PQR 𝑤! 𝑤!$") =
?(S!,S!"#)
?(S!"#)

Add-1 Estimate: 𝑃UVV$" 𝑤! 𝑤!$") =
? S!,S!"# W"
? S!"# WX

Add- 𝛼 Estimate: 𝑃UVV$Y 𝑤! 𝑤!$") =
? S!,S!"# WY!
? S!"# WY$

Assumes a sparse Dirichlet prior

Add-1 estimation in practice

• add-1 isn’t used for N-grams:
• Not every word should get the same boost in every situation
• We’ll see better methods

• But add-1 is used to smooth other NLP models
• For text classification
• In domains where the number of zeros isn’t so huge.

What other approaches
might we try?

Big n:
• Sensitive to more

context
• More sparse

Small n
• Consider short context
• Robust counts

Longer vs shorter n-grams
higher vs lower order n-grams

Approach 1: Backoff

When we have good higher-order n-grams, use
them. Otherwise, use lower-order n-grams

For example:
Start with 4-gram, if not good,

use tri-gram, if not good,
use bi-gram, if not good,

use unigram

Approach 2 – Combine the ‘grams

We call this interpolation

Weighted average of all the grams

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

Approach 2 – Combine the ‘grams

Context specific weights
Jelinek-Mercer smoothing

(1980)

Additional Approaches

• Discounted backoff (Katz backoff)

• Stupid backoff

• Kneser-Ney smoothing
• Extra credit

Evaluating Language
Models

Perplexity

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑤", 𝑤#, 𝑤Z, … , 𝑤%) =

= 𝑃(𝑤", 𝑤#, 𝑤Z, … , 𝑤%)
#
%

= % "
[(S#,S&,S',…,S%)

𝑃 𝑤", 𝑤#, 𝑤Z, … , 𝑤% depends on the LM we use

The lower the perplexity, the better the model

Perplexity

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑤", 𝑤#, 𝑤Z, … , 𝑤%) =

= % "
[(S#,S&,S',…,S%)

The lower the perplexity, =>
the higher the probability =>
the model is less surprised by the sentence

Summary

• Motivate LMs, applications
• Reviewed

• Joint
• Conditional
• Chain rule

• N-grams
• Training LMs
• Evaluating LMs

Bonus of LMs

We can generate text!

