- ..-;3,4.;,41«; 7 ' , CS 383 — Computational

Ve TS

~ CC” Text Analysis

@ -

Lecture 2
Language Modeling

Adam Poliak
01/23/2023

Slides adapted from Philipp Koehn, Jordan Boyd-Graber,
Jason Eisner, Dan Jurafsky

Announcements

e Office Hours:
* Thursdays 3-4:30pm

* There are a few | will reschedule
e After lecture on Monday

* HWOO due tonight
* Reading01 due tonight

* HWO01 released tonight, due Monday 01/30

e Based on today’s lecture

* Reading02 released tonight, due Monday 01/30

Outline

* NLP/HLT/CTA

* Define LMs
* Motivate LMs, applications

* Probability review
* Joint
e Conditional
e Chain rule

* N-grams
* Computing LMs

 MLE
* Smoothing

* Evaluating LMs

Language Model

Answers the question(s):

* How likely is a piece of text a good example of the
language?

* How likely is a given piece of text to be seen in the
wild?

“assigns probabilities to sequences of words” -
textbook

Why do we want probabilities to
sequences of words? What can we do
with probabilities of sequences of words?

Classification:
LanguagelD
Text Categorization
Authorship attribution

Predict next word
Texting on phone

Autocorrect/Spelling Correction
Machine Translation

Language Generation

Contextual Spelling Correction

* Which is most probable?
1. ...I1think they’re okay ...
2. ...lthink there okay ...
3. ...lthink their okay ...

* Which is most probable?

1. ... by the way, are they’re likely to ...
2. ...bythe way, are there likely to ...
3. ... by the way, are their likely to ...

Machine Translation

good English? | good match
(n-gram) to French?
Jon appeared in TV.
Appeared on Jon TV.
In Jon appeared TV.
Jon 1s happy today.
Jon appeared on TV.

TV appeared on Jon.

TV in Jon appeared.

Jon was not happy.

Machine Translation

good English? | good match
(n-gram) to French?
Jon appeared in TV. v
Appeared on Jon TV.
In Jon appeared TV. v
Jon is happy today. v
Jon appeared on TV. v v
TV appeared on Jon. v
TV in Jon appeared.
Jon was not happy. v

Language generation

* Choose randomly among outputs:

* Visitant which came into the place where it will be Japanese has
admired that there was Mount Fuji.

e Top 10 outputs according to bigram probabilities:
* Visitors who came in Japan admire Mount Fuji.
* Visitors who came in Japan admires Mount Fuji.
* Visitors who arrived in Japan admire Mount Fuiji.
 Visitors who arrived in Japan admires Mount Fuji.
* Visitors who came to Japan admire Mount Fuiji.
e A visitor who came in Japan admire Mount Fuji.
* The visitor who came in Japan admire Mount Fuiji.
* Visitors who came in Japan admire Mount Fuji.
* The visitor who came in Japan admires Mount Fuiji.
* Mount Fuji is admired by a visitor who came in Japan.

How do we compute probability
of a sequence of words?

Today’s main topic!

P(“l hope to learn more about text analysis tools
and how to use them™) = ?7?7?7

Approach 0: Look up how many times we've
seen this sentence before?

Issue with Approach O

Most sentences have never been seen before

"l hope to learn more about text analysis tools and how to use them" X !,) Q

Q_ All [»] Videos [] Images [News] Books : More Tools

About 339,000,000 results (1.11 seconds)

No results found for "I hope to learn more about text analysis tools and how to use them".

Outline

* NLP/HLT/CTA

* Define LMs
* Motivate LMs, applications

* Probability review
* Joint
e Conditional
e Chain rule

* N-grams
* Computing LMs

 MLE
* Smoothing

* Evaluating LMs

Probability side bar

P(“l hope to learn more about text analysis tools and how
to use them”)

What type of probability is this?
Joint probability

What's the probability of event A and
event B of both happening

EventA=""
Event B = “hope”
Event C = “learn”

Probability side bar: Joint

P(A, B): Probability of event A and event B both
happening

P(4,B) < P(A)
P(A,B) < P(B)

P(A,B) = P(A) =P(B|A) =P(B) *P(A|B)

Probability side bar: Conditional

P(A | B): Probability of event A happening if we
know event B is happening

P(A|B) = P(A'B)/P(B)

Therefore,

P(A,B) = P(A|B) * P(B)

Probability side bar: more variables

P(A,B,C,D):
Probability of A and B and C and D happening

Recall, P(A,B) = P(A)P(B|A)

(Probability of A and B) and C and D happening
P(A)P(B|A) and C and D happening
P(A)P(B|A) P(C | A, B) and D happening

P(A,B,C,D) = P(A)P(B|A) P(C | A,B)P(D|A,B,C)

Probability Chain Rule

P(xl, xZ, x3, ...,xn) —_
P(x1)P(xy|x1)P(x3]|%q, x5) ... P(xn|X1, ..., Xm0)

More compactly
P(xl, xZ, x3, ...,xn) —

[1: P(x; [x1, %2, oons Xi-1)

Back to language

What are our random variables?
The words in our sentence

Probability of wy, w,, ..., w,, =

HnP(Wn |W1:W2» ---:Wn—l)

P(“I hope to learn more about text
analysis tools and how to use them”)

P(“I”)

* P(“hope | I")

* P(“to” | “I hope”)

x* P(“learn” |"I hope to”)

x* P(“more” | “I hope to learn”) x P(“about” | “I hope to learn more”)
* P(“text” | “I hope to learn more about”)

* P("analysis”|“l hope to learn more about text”)

x* P(“tools” | “I hope to learn more about text analysis”)

* P(“and” | “I hope to learn more about text analysis tools”)

* P(“how” | “I hope to learn more about text analysis tools and”)

x* P(“to” | “I hope to learn more about text analysis tools and how”)

Compute P(“I”)

P(“I”)

* P(“hope | I")

* P(“to” | “I hope”)

x* P(“learn” |"I hope to”)

x* P(“more” | “I hope to learn”) x P(“about” | “I hope to learn more”)
* P(“text” | “I hope to learn more about”)

* P("analysis”|“l hope to learn more about text”)

x* P(“tools” | “I hope to learn more about text analysis”)

* P(“and” | “I hope to learn more about text analysis tools”)

* P(“how” | “I hope to learn more about text analysis tools and”)

x* P(“to” | “I hope to learn more about text analysis tools and how”)

Compute P(“1")

P (HIU) —

count(“I”)

(where N is the number of tokens)

Compute P(“hope” | “1”)

P(“I”)

* P(“hope | I")

* P(“to” | “I hope”)

x* P(“learn” |”I hope to”)

x* P(“more” | “I hope to learn”) x P(“about” | “I hope to learn more”)
x* P(“text” | “I hope to learn more about”)

* P("analysis”|“I hope to learn more about text”)

x* P(“tools” | “I hope to learn more about text analysis”)

* P(“and” | “I hope to learn more about text analysis tools”)
* P(“how” | “I hope to learn more about text analysis tools and”)
* P(“to” | “I hope to learn more about text analysis tools and how”)

Compute P(“hope” | “1”)

P("hope | llI") —

count(“I hope”)
count (“I")

Compute P(“to” | “l hope”)

P(“I”)

* P(“hope | I")

* P(“to” | “I hope”)

x* P(“learn” |”I hope to”)

x* P(“more” | “I hope to learn”) x P(“about” | “I hope to learn more”)
x* P(“text” | “I hope to learn more about”)

* P("analysis”|“I hope to learn more about text”)

x* P(“tools” | “I hope to learn more about text analysis”)

* P(“and” | “I hope to learn more about text analysis tools”)
* P(“how” | “I hope to learn more about text analysis tools and”)
* P(“to” | “I hope to learn more about text analysis tools and how”)

Compute P(“to” | “l hope”)

P("to | “I hope”) =

count(“I hope to”)

count (“I hope”)

Compute P(“hope” | “1”)

P(“I”)

* P(“hope | I")

* P(“to” | “I hope”)

x* P(“learn” |”I hope to”)

x* P(“more” | “I hope to learn”) x P(“about” | “I hope to learn more”)
x* P(“text” | “I hope to learn more about”)

* P("analysis”|“I hope to learn more about text”)

x* P(“tools” | “I hope to learn more about text analysis”)

* P(“and” | “I hope to learn more about text analysis tools”)
* P(“how” | “I hope to learn more about text analysis tools and”)
* P(“to” | “I hope to learn more about text analysis tools and how”)

Compute P(“tools” | “I hope to
learn more about text analysis”)

P(“I")

* P(“hope | I")

* P(“to” | “I hope”)

x* P(“learn” |”I hope to”)

x* P(“more” | “I hope to learn”) x P(“about” | “ILhope to learn more”)
x* P(“text” | “I hope to learn more about”)

* P("analysis”|“I hope to learn more about text”)

x* P(“tools” | “I hope to learn more about text analysis”)

* P(“and” | “I hope to learn more about text analysis tools”)

* P(“how” | “I hope to learn more about text analysis tools and”)

* P(“to” | “I hope to learn more about text analysis tools and how”)

Compute P(“tools” | “I hope to
learn more about text analysis”)

P("tools | “I hope to learn more about text analysis”)

count(“lI hope to learn more about text analysis tools”)

count (“I hope to learn more about text analysis”)

"i hope to learn more about text analysis" X S @ Q

Q_ All] Images [»] Videos =) News] Books : More Tools

About 544,000,000 results (0.96 seconds)

No results found for "i hope to learn more about text analysis".

Compute P(“tools” | “I hope to
learn more about text analysis”)

P("tools | “I hope to learn more about text analysis”)

"i hope to learn more about text analysis"

Q Al L) Images [»] Videos [E) News] Books : More Tools

About 544,000,000 results (0.96 seconds)

No results found for "i hope to learn more about text analysis".

Same issue as before

EHe e oo H o ol B
o X KXo neo X R IX; E
o
- B e B 1 b 2 - M
< c
B XoxKEE®EX Ww - = & =
Bz &
£ MHEMHOWLE X o ¢ - a 7 = =
U = o
= mla. =
nhu - R L I -2 S L) - w @ u
u . =
<& =
3 WMexHeox Xwaln - b= 2
=D —
o (— | =
w I O - - L 4 L] B &= cml
go 2 &
c o X 8 o o8 8 1o e | m
=1
c =)
T S Reank¥eololn #
E
= = .. : V2]
2 g &
= & %
13 £ g
s B #
& s : _ S
o & A -
- h - S
AR g
' . s
0 =———— u
@) o
p) -
wn..l..l..s.wa\..uv.\..w’“w.\v.ln! e s eee s ——
5 -
- ...
m i
= =
et u e
O $ameimememtiperaog -.\.4./q/....1..ﬁ.lu:iix rrarias
S pow— -
0 ©n :
"
g g
.-
TE R
= 5 = cr W
..nn _ L O Q.VU m (&)
:3 SR 25
C = —_—
-2 Y=g
° G :
£ X - . T

Markovian Assumption

* Simplifying assumption:
Andrei Markov

P(analysis |I hope to learn more about textual)
~ P(analysis |learn more about textual)

* Or maybe

P(analysis |I hope to learn more about textual)
~ P(analysis | textual)

Slide from textbook slides

Markov Assumption in plain
language

Don’t worry too much about the past

LryHakuna
|
matatal ie

Markov Assumption
Pww,...w)= HP(wl. lw._,oow._))

In other words, we approximate each
component in the product by recent history

Pw lww,...w._)=Pw. lw__ ...w._)

So how far back should we go?

One word
Two words
Three words

5 words

So how far back should we go?

One word
Unigram P(ww,...w)= HP(W)
Two words
Bigram P(w. lww,...w._)=Pw. |lw,)
Three words
Trigram
5 words
Five-gram

N-8rams
“a sequence of n words”

Alternatively:

“predictive model that assigns it a probability”

Outline

* NLP/HLT/CTA

* Define LMs
* Motivate LMs, applications

* Probability review
* Joint
e Conditional
e Chain rule

* N-grams
e Computing n-grams/LMs

 MLE
* Smoothing

* Evaluating LMs

Computing n-gram
probabilities

MLE: Maximum Likelihood
Estimate

Computing bi-grams:

count(w,_,,w,)

Pw, lw,_)=
(W 1Wi) count(w_,)

c(w,_,,w))

Pw,lw_)= v)

MLE: Maximum Likelihood
Estimate

Computing tri-grams:

count(w;, w;_1, W;_»)

P w: lw: Wi _ p—
(l| =1, ""1 2) Count(Wi_l;Wi—Z)

c (W, wi_q,Wi_3)

c (Wi—1, W;i—2)

P(w; lwi_,w;i_y) =

Maximum Likelihood Estimates

The maximum likelihood estimate
e of some parameter of a model M from a training set T
* maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words

What is the probability that a random word from some other text will be
“bagel”?

MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus

e Butitis the estimate that makes it most likely that “bagel” will occur 400 times in
a million word corpus.

An example (bi-gram)

<s>|am Sam </s>

c(w._,,W,
Pw, lw,)= ((’_1)) <s>Sam | am </s>
c(w.
-1 <s> | do not like green eggs and ham </s>
P | <s>) P(Sam | <s>) P(am | I)

P(<s> | Sam) P(Sam | am) P(do 1)

An example (bi-gram)

<s>|am Sam </s>

clw. ,,w,)
Pw,lw_)= (’ 1)’ <s>Sam | am </s>
c(w. :
=1 <s> | do not like green eggs and ham </s>
P(I|<s>) =2 =.67 P(sam|<s>)=1=.33 Pam|I)=3=.67
P(</s>|Sam)=%=0.5 P(Sam|am)=3=.5 P(do|I)=1=.33

More examples:
Berkeley Restaurant Project
sentences

can you tell me about any good cantonese restaurants close
by

mid priced thai food is what i’'m looking for
tell me about chez panisse

can you give me a listing of the kinds of food that are
available

i'm looking for a good place to eat breakfast
when is caffe venezia open during the day

e Qut of 9222 sentences

Raw bigram counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 151 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

* Normalize by unigrams:

e Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 0330 0.0036 | 0 0 0 0.00079
want 0.0022 | 0 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017] 0.28 0.00083 | O 0.0025| 0.087
eat 0 0 0.0027] 0 0.021 0.00271 0.056 |0
chinese || 0.0063 | O 0 0 0 0.52]0.0063 |0
food 0.014 |0 0.014 | 0O 0.00092 | 0.0037 | O 0
lunch | 0.0059 | O 0 0 0 0.0029 | O 0
spend || 0.0036 |0 0.0036 | O 0 0 0 0

Bigram estimates of sentence
probabilities

P(<s> | want english food </s>) =
P(l|<s>)
x P(want|l)
x P(english|want)
x P(food|english)
x P(</s>|food)
= .000031

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
* P(to|want) = .66

e P(eat | to) = .28

* P(food | to) =0

* P(want | spend) =0

P (i | <s>)=.25

How did we |learn this
knowledge?

How did we |learn this
knowledge?

Bigram estimates of sentence
probabilities

P(<s> | want english food because it is very very yummy </s>)

P(l|<s>)

x P(want]l)
x P(english|want)
x P(food|english)

x P(</s>|yummy)

Bigram estimates of sentence
probabilities

P(<s> | want english food because it is very very yummy </s>) =
P(l]<s>)
x P(want]|l)
x P(english|want)
x P(food|english)

x P(</s>|yummy)
= .000000000000001

Practical Issues

* We do everything in log space
* Avoid underflow
* (also adding is faster than multiplying)

log(p, x p, x p3 x p,)=log p, +log p, +1log p; +log p,

Example (tri-gram)

Data from Europarl

word Je T biword | “the e’

0.547
0.138
0.040
0.031
0.022

Example (tri-gram)

Data from Europarl

word e | pword | “thered

Cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

5 0.022

How many trigrams starting with “the red” appear in
Europarl?

225

What’s probability of
“Strengthen capacities of the Red
Crescent Society of Kazakhstan™?

Assuming a trigram model

P(strengthen | < s >< s >) * P(capacities | <
s > strengthen) * ... P(crescent | the red) * ...

What’s P(crescent | the red)?

Assuming a trigram model

P(strengthen | < s ><s > D (capacities | <
s > strengthen) * ..CP(crescent | the red) *)...

word o pword | “there)

Cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

5 0.022

What’s probability of
“Strengthen capacities of the Red
Crescent Society of Kazakhstan”?

Assuming a trigram model

P(strengthen | < s >< s >) xPlcapacities | <
s > strengthen) * ..CP(crescent | the red) *)...

word o pword | “there)

Cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

5 0.022

What’s probability of
“Strengthen capacities of the Red
Crescent Society of Kazakhstan”?

Assuming a trigram model

P(strengthen | < s >< s >) x Plcanacities | <
s > strengthen) x ..

word Je | pluord | "thered

Cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

5 0.022

Unknown n-grams

If we have an n-gram we haven’t seen before,
probability of the sequence is equalto 0O

Smoothing

The intuition of smoothing (from Dan Klein)

* When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total
» Steal probability mass to generalize better

attack

man
outcome

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

allegations

reports

cIaimsI

request I

attack

man
outcome

7 total

Add-1 smoothing
(aka Laplace smoothing)

Just add one to every count

c(Wi,Wi_q)

c(Wi-1)

MLE Estimate: PMLE (Wi |Wi—1) —

c(wiwi_q)+1

c(Wi-1)

Add-1 Estimate: Pygq_1 (W; |[w;_1) =

Why is this Add-1 Estimate incorrect?
Y Prgg—1 (W; lw;_{) = 1isn’t true anymore

Add-1 smoothing
(aka Laplace smoothing)

Just add one to every count

c(Wi,Wi_q)

c(Wi-1)

MLE Estimate: PMLE (Wi |Wi—1) —

c(wiwi_q)+1

Add-1 Estimate: Pygq_1 (W; [Wi_1) = Wi)4V

Now
2 Prga-1 Wi lwi—y) =1

Raw bigram probabilities

1 want | to eat chinese | food | lunch | spend

1 0.002 (03310 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054|0.0011
to 0.00083 | 0 0.0017 | 0.28 | 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 902F=a) 056 |0
chinese || 0.0063 | O 0 0 0 D.0063 | 0
food 0014 |0 0.014 |0 0.000 0
lunch || 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 |0 0.0036 | O 0 0 0 0
Laplacian bigram probabilities

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026 | 0.0018 0.055
eat 0.00046| 0.00046(0.0014 0.00046| 0.0078 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

Add-a smoothing

c(Wiwi—1)

c(Wi—1)

MLE Estimate: PMLE (Wi |Wi—1) —

c(wiwi_q1)+1
C(Wi_1)+V
c(wiwi_1)+a;

Add-1 Estimate: Pygq_1 (W; |[w;_1) =

Add- a Estimate: Pygq—_o (W; Wi_1) = i)ty

Assumes a sparse Dirichlet prior

Add-1 estimation in practice

e add-1 isn’t used for N-grams:
* Not every word should get the same boost in every situation
 We’'ll see better methods

e But add-1 is used to smooth other NLP models
e For text classification
* In domains where the number of zeros isn’t so huge.

What other approaches
might we try?

_onger vs shorter n-grams
nigher vs lower order n-grams

Big n: Small n
e Sensitive to more e Consider short context
context

* Robust counts
* More sparse

Approach 1: Backoff

When we have good higher-order n-grams, use
them. Otherwise, use lower-order n-grams

For example:
Start with 4-gram, if not good,
use tri-gram, if not good,
use bi-gram, if not good,

use unigram

Approach 2 — Combine the ‘grams

We call this interpolation

p(Wn|Wn—2Wn—1) — Alp(wn‘wn—2wn—l)
——AQP(W;@ |Wn_1)
——AgP(Wn)

Weighted average of all the grams

Approach 2 — Combine the ‘grams

Context specific weights

Jelinek-Mercer smoothing

P(W,,‘W,,_zw,,_l) — }\‘l (wn—l)P("n‘wn—an—l)

n—2

+Ao(w :; é)P(WN|Wn—1)

Additional Approaches

* Discounted backoff (Katz backoff)

e Stupid backoff

* Kneser-Ney smoothing
e Extra credit

Evaluating Language
Models

Perplexity

Perplexity (wq,wy, W3, ..., W,,) =
1
= P(Wy, Wy, W3, ..., Wy)n

_n 1
P(Wl,Wz,Wg,...,Wn)
P(wy,w,, w3, ...,w,) depends on the LM we use

The lower the perplexity, the better the model

Perplexity

Perplexity (wq,wy, W3, ..., Wy) =

_n 1
P(Wl,Wz,Wg,...,Wn)

The lower the perplexity, =>
the higher the probability =>
the model is less surprised by the sentence

Summary

* Motivate LMs, applications

* Reviewed
* Joint
e Conditional
e Chain rule

* N-grams
* Training LMs
* Evaluating LMs

Bonus of LMs

We can generate text!

