

CS 383 – Computational Text Analysis

Lecture 1

Adam Poliak 01/18/2023

What is Computational Text

Computational Text Analysis for Social Science: Model Assumptions and Complexity

Brendan O'Connor* David Bamman[†] Noah A. Smith^{†*} *Machine Learning Department

Commentary

Adapting computational text analysis to social science (and vice versa)

Paul DiMaggio

Abstract

Social scientists and computer scientist are divided by small differences in perspective and disciplinary divide. In the field of text analysis, several such differences are noted: social scientists models to explore corpora, whereas many computer scientists employ supervised models to tra hold to more conventional causal notions than do most computer scientists, and often favor existing algorithms, whereas computer scientists focus more on developing new models; and com trust human judgment more than social scientists do. These differences have implications that pot practice of social science.

Keywords

Topic models, text analysis, unsupervised models, interpretation, sentiment analysis, supervised

Computational text analysis: Thoughts on the contingencies of an evolving method

Big Data & So July-Decemb © The Auth Reprints and sagepub.com/ DOI: 10.1177 bds.sagepub.com/ **SAGE**

Daniel Marciniak

Abstract

ECR Forum

Mapping a public discourse with the tools of computational text analysis comes with many contingenci

Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts

Justin Grimmer

Department of Political Science, Stanford University, Encina Hall West 616 Serra Street, Stanford, CA 94305 e-mail: jgrimmer@stanford.edu (corresponding author)

Brandon M. Stewart

Department of Government and Institute for Quantitative Social Science, Harvard University, 1737 Cambridge Street, Cambridge, MA 02138 e-mail: bstewart@fas.harvard.edu

Edited by R. Michael Alvarez

Politics and political conflict often occur in the written and spoken word. Scholars have long recognized this, but the massive costs of analyzing even moderately sized collections of texts have hindered their use in political science research. Here lies the promise of automated text analysis: it substantially reduces the costs of analyzing large collections of text. We provide a guide to this exciting new area of research and show how, in many instances, the methods have already obtained part of their promise. But there are pitfalls to using automated methods—they are no substitute for careful thought and close reading and require extensive and problem-specific validation. We survey a wide range of new methods, provide guidance on how to validate the output of the models, and clarify misconceptions and errors in the literature. To conclude, we argue that for automated text methods to become a standard tool for political scientists, methodologists must contribute new methods, and new methods of validation.

July-© T Repr sagej DOI: bds.s

What is Data Science?

• "Data science is the study of extracting value from data" –

Jeannette Wing

What is Data Science?

 "Data science is the study of extracting <u>value</u> from data" –

Jeannette Wing

Value

- Requires domain expertise to determine what value is
- Value from data is different based on the domain and the needs

What is Data Science?

 "Data science is the study of <u>extracting</u> value from data" –

Jeannette Wing

- Extracting
 - emphasizes action on data
 - mining information

What is Computational Text Analysis? *computational Text Analysis* • "Data science is the study of extracting value from data" –

Jeannette Winglam Poliak

large scale textual

Computational Text Analysis

 Computational text analysis is not a replacement for but rather an addition to the approaches one can take to analyze social and cultural phenomena using textual data. By moving back and forth between large-scale computational analyses and small-scale qualitative analyses, we can combine their strengths so that we can identify large-scale and long-term trends, but also tell individual stories

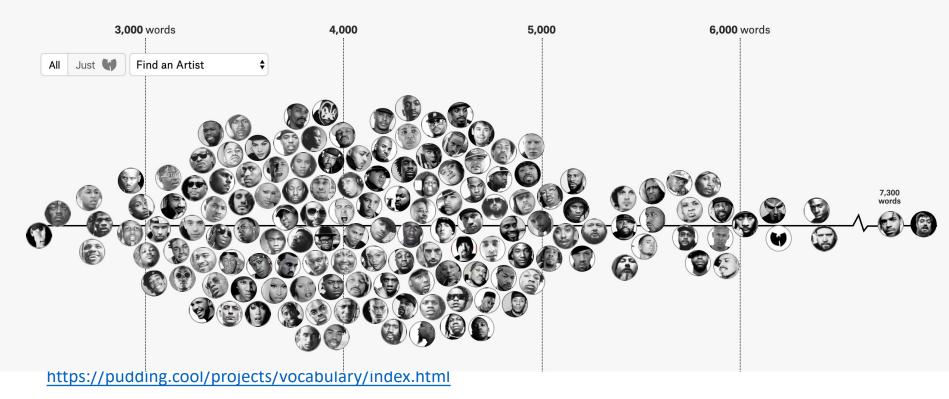
How we do things with words ...

Computational Text Analysis

 Computational text analysis is not a replacement for but rather an addition to the approaches one can take to analyze social and cultural phenomena using textual data. By moving back and forth between large-scale computational analyses and small-scale qualitative analyses, we can combine their strengths so that we can identify large-scale and long-term trends, but also tell individual stories What can we do with computational text analysis?

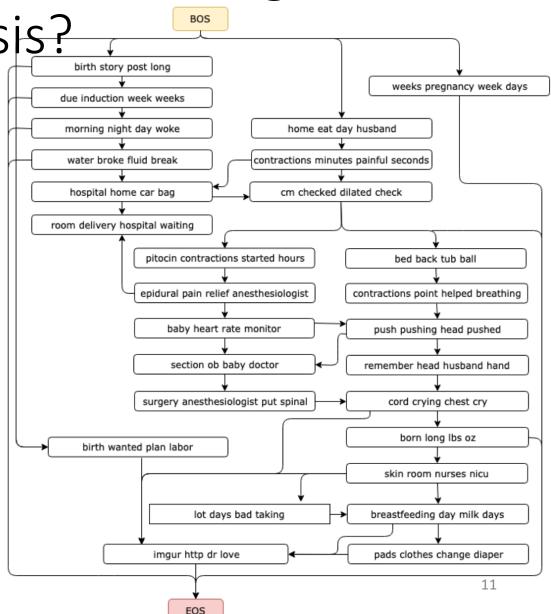
Sort artists by their vocabulary

of Unique Words Used Within Artist's First 35,000 Lyrics

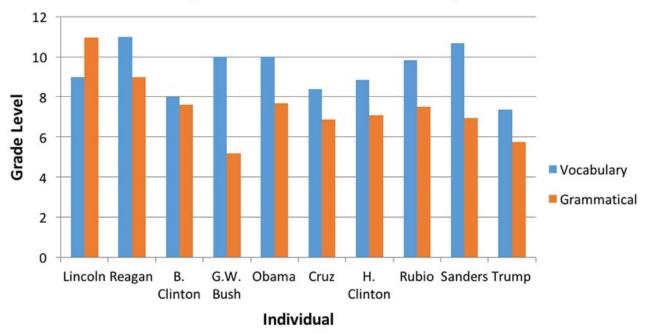


 Identify flow of topics in birthing narratives

<u>https://maria-</u> antoniak.github.io/resources/2019_csc w_birth_stories.pdf



 Categorize the level of presidential candidates' speeches



Vocabulary and Grammatical Comparison

https://arxiv.org/pdf/1603.05739.pdf

• Who wrote the anonymous Federalist Papers?

FEDERALIST:

THE

A COLLECTION OF

ESSAYS,

WRITTEN IN FAVOUR OF THE

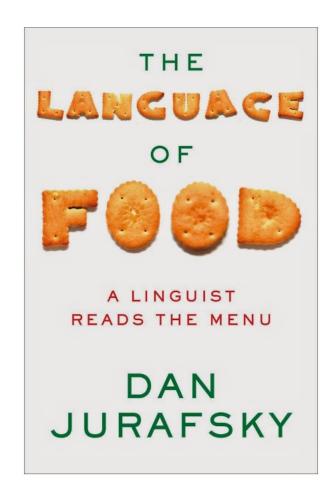
https://www.jstor.org/stable/2283270

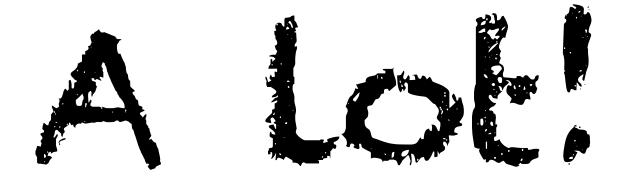
investigations | joshua freedman and dan jurafsky

Authenticity in America Class Distinctions in Potato Chip Advertising

Naturalness/Ingredients in Expensive Chips		Historicity/Locality in Inexpensive Chips	
Naturalness	all natural	Historicity	using an old family recipe
Naturalness	great tastenaturally	Historicity	time-tested standard
Naturalness	nothing fake or phony	Historicity	almost 85-year-old recipe
Naturalness	still made with all natural oil	Historicity	a time-honored tradition
Naturalness	totally natural	Historicity	since 1986
Naturalness	absolutely nothing artificial	Historicity	since 1921
Naturalness	only real food ingredients	Historicity	the chips that built our company
Ingredients	Yukon Gold potatoes	Historicity	Jim Herr, Founder
Ingredients	Sea salt	Historicity	Bill and Sally Utz believed
Ingredients	only the finest potatoes	Location	in the shadow of the Cascade Mountains
Process	hand-rake every batch	Location	made in the great Pacific Northwest
Process	kettle cooked	Location	classic American snacks
Process	special cooking techniques	Location	freshness and authenticity of the islands

https://online.ucpress.edu/gastronomica/article-abstract/11/4/46/44534/Authenticity-in-America-Class-Distinctions-in





Computational Text Analysis in this course

- Aggregate large scale textual data
- Text Processing
- Discovering patterns in data
 - Applying NLP/ML tools to text

Course Objectives

Learn and master the methods behind:

- 1. Natural Language Processing & Text-based Machine Learning
- 2. Aggregate large scale textual data
- 3. Discovering patterns in data
- 4. Complete an independent research project

Course Outline

- Text Processing, Unsupervised Learning
- Supervised Machine Learning
- Hypothesis Testing
- Data Collection
- Advanced Topics

4 weeks

3 weeks

2 weeks

2 weeks

2 weeks

Logistics

Communication

- Course webpage:
 - <u>https://cs.brynmawr.edu/cs383-cta</u>
- Piazza:
 - Online discussion board
- Gradescope:
 - Submitting assignments

Lectures

- Live classes
 - Primarily lectures
 - Q/A
 - Recorded
 - Discussions
- Readings:
 - Readings associated with the lecture's material
 - Make sure to read before lecture
 - Distributed on course schedule

Assesment

• Midterms

- March 2nd
- April 13th
- flexible grading policy
- Final Exam

Assignments & Assessment

- Weekly long homeworks
- Reading reflections
- Midterm Wednesday 04/12
- Final Project (pairs)

Reading reflections

- Usually due Friday midnight
- For each reading:
 - 3-4 sentence summary
 - 1 sentence about something in particular that you like
 - 1 sentence about something you didn't like or something you found confusing and you'd like me to explain
 - 1 question for future work
- Goal: Examples of computational text analysis
 - Preparation for final projects
- Complete individually

Homeworks

- A mix of programming and written analysis
 - Usually given starter code
- Implement methods covered in class
- Must completely individually

Final Project

- Develop Research Question
- Collect Textual Data to Answer Question
- Data Exploration & Analysis
- Machine Learning
- Can use toolkits/APIs

Final Project – Deliverables

- Project ideation TBD
- Project proposal TBD
- Project presentations Wed 04/26 (last day of classes)
- Project submissions end of finals

Assignment Logistics

- Distribution:
 - Course website
 - Can work on your own machines or CS lab machines

- Gradescope (for submission)
- Final project:
 - Likely use CS lab machines

Participation Grade

- During class meetings:
 - Topic discussion
 - Asking questions
- Asynchronous
 - Active on Piazza

Course staff

Adam Poliak (apoliak@brynmawr.edu)

- PhD in Computer Science from Johns Hopkins University
- Taught 2 years at Barnard
 - Data Science and this course (for non-majors)
- 2nd semester at BMC
- Research:
 - Natural Language Processing
 - Data Science applied to text data

Our job is to help you succeed!

Course Policies

Collaboration

- Encouraged to discuss problems
- Do not share solutions

Late Days

- Late Days 10 late days
- Can use at most 2 late days on an assignment
- Can be used only on homeworks and reading responses

Announcements – Assignments

- Homework 00
 - Due Monday night
- Readings:
 - Reading 01 due Monday night (available already)
 - Reading 02 due next Friday night (posted later this week)

Today's focus: Words, words, words

Why focus on words?

- Words suggest meaning
- If we can identify words, we can count them
- If we we can count words, we can quantify (aspects of) a text that contains those words.
- If we can quantify a text, we can compute with it.
 - Answer quantitative questions about text
- Caveat:
 - Quantifying a text isn't the same thing as being *correct* about what that text means, nor is meaning solely a function of word counts(!).

Matthew Wilkens - https://mattwilkens.com/

What is a word?

How many words?

I am planning to play a new show in New York before going to watch a new play

Outline

- Tokenization
- Lemmatization
- Stemming
- Stopwords
- Part of Speech
- Dependency Parsing
- Named Entities

Tokenization

Copyright © 2016 Barnard College

Tokenization

"The process of identifying the words in the input sequence of characters, mainly by separating the punctuation marks but also by identifying contractions, abbreviations, and so forth"

Chapter 5

Basic Text Processing In: Text Mining:

A Guidebook for the Social Sciences

<u>"Mr. Smith doesn't like apples."</u>

How many tokens are in the sentence?

"Mr. Smith doesn't like apples."

"The process of identifying the words in the input sequence of characters, mainly by separating the punctuation marks but also by identifying contractions, abbreviations, and so forth"

"Mr. Smith doesn't like apples."

"The process of identifying the words in the input sequence of characters, mainly by separating the punctuation marks but also by identifying contractions, abbreviations, and so forth"

<u>"Mr. Smith doesn't like apples."</u>

"The process of identifying the words in the input sequence of characters, mainly by separating the punctuation marks but also by identifying contractions, abbreviations, and so forth"

"Mr. Smith doesn't like apples."

Mr.

Smith

does

n't

like

•

apples

Type vs Token

- <u>Type</u>: An element of the vocabulary
- <u>Token</u>: an instance of a type in the text
- **N** = number of tokens
- **V** = vocabulary, i.e. set of tokens
- /V / = size of Vocabulary

Type vs Token

- **<u>Type</u>**: An element of the vocabulary
- <u>Token</u>: an instance of a type in the text

"We refuse to believe that there are insufficient funds in the great vaults of opportunity of this nation. And so we've come to cash this check, a check that will give us upon demand the riches of freedom and the security of justice"

• Q: How many types, tokens?

Lemmatization & Stemming

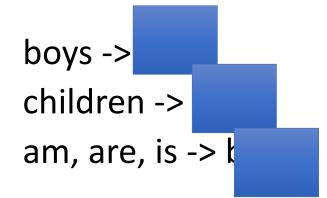
Lemmatization

"reduces the inflectional forms of a word to its root form"

Chapter 5

Basic Text Processing In: Text Mining:

A Guidebook for the Social Sciences



Lemmatization - example

I have a dream that one day even the state of Mississippi, a state sweltering with the heat of injustice, sweltering with the heat of oppression will be <u>transformed</u> into an oasis of freedom and justice.

With this faith we will be able to <u>transform</u> the jangling discords of our nation into a beautiful symphony of brotherhood.

Stemming

"applies a set of rules to an input word to remove suffixes and prefixes and obtain its stem, which will now be shared with other related words."

Chapter 5

Basic Text Processing In: Text Mining:

A Guidebook for the Social Sciences

"more radical way to reduce variation"

Chapter 2

Dirk Hovy textbook

Porter Algorithm for Stemming

An algorithm for suffix stripping

M.F. Porter

Computer Laboratory, Corn Exchange Street, Cambridge

1. INTRODUCTION

Removing suffixes from words by automatic means is an operation which is especially useful in the field of information retrieval. In a typical IR environment, one has a collection of documents, each described by the words in the document title and possibly the words in the document abstract. Ignoring the issue of precisely where the words originate, we can say that a document is represented by a vector of words, or *terms*. Terms with a common stem will usually have similar meanings, for example:

Frequently, the performance of an IR system will be improved if term groups such as this are conflated into a single term. This may be done by removal of the various suffixes -ED, -ING, -ION, -IONS to leave the single stem In addition, the suffix stripping process will reduce the total number of terms in the IR system, and hence reduce the size and complexity of the data in the system, which is always advantageous.

Porter Stemming Explained

"For each language, it defines a number of suffixes (i.e., word endings) and the order in which they should be removed or replaced. By repeatedly applying these actions, we reduce all words to their stems."

Chapter 2

Dirk Hovy textbook

https://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/P orter-1980.pdf

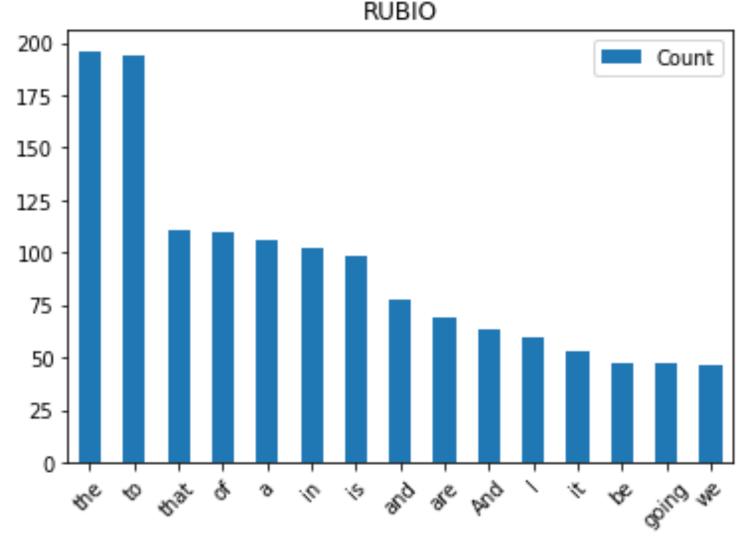
Stemming Example

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

Stop Words

Frequency of Rubio's terms in 2016 Miami debate



63

Stopwords

"set of ignorable words that occur often, but not contribute much to our task, so it can be beneficial to remove."

Chapter 2

Dirk Hovy textbook

Part of Speech

Part of Speech

- Categorize words based on their grammatical properties
- Part-of-speech tagging:
 - Process of identifying the grammatical category of tokens in a corpus

l	Iniversal Tag Set	
Tag	Description	Example
ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
VERB	words for actions and processes	draw, provide, go
PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
	spacial, temporal, or other relation	
AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
DET	Determiner: marks noun phrase properties	a, an, the, this
NUM	Numeral	one, two, first, second
PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
	subordinate clause such as a sentential complement	
PUNCT	Punctuation	; , ()
SYM	Symbols like \$ or emoji	\$, %
X	Other	asdf, qwfg
		07

Simplified Tag set

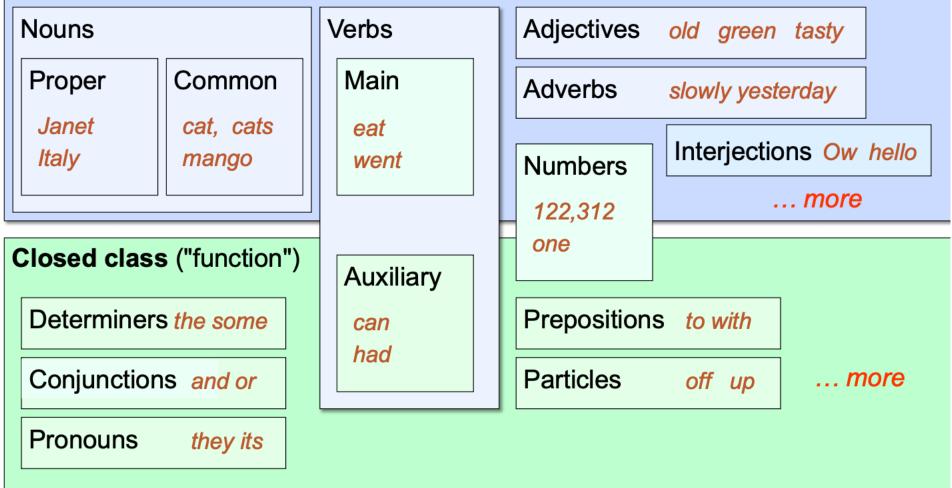
Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
•	punctuation marks	.,;!
х	other	ersatz, esprit, dunno, gr8, univeristy

Word Classes: Open vs Closed

- Closed class words
 - Relatively fixed membership
 - Usually function words: short, frequent words with grammatical function
 - determiners: *a, an, the*
 - pronouns: *she, he, I*
 - prepositions: on, under, over, near, by, ...
- Open class words
 - Usually content words: Nouns, Verbs, Adjectives, Adverbs
 - Plus interjections: oh, ouch, uh-huh, yes, hello
 - New nouns and verbs like iPhone or to fax

Word Classes Graphic

Open class ("content") words



Dependency Parsing

Dependency Parsing - Idea

The idea in dependency grammar is that the sentence "hangs" off the main verb like a mobile. The links between words describe how the words are connected.

Chapter 2

Dirk Hovy textbook

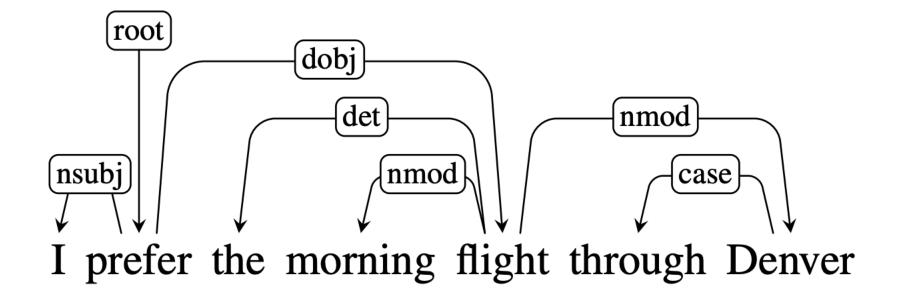
Universal DP Tags

Clausal Argument Relations	Description
0	•
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
ССОМР	Clausal complement
ХСОМР	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Examples of tags

Relation	Examples with <i>head</i> and dependent
NSUBJ	United canceled the flight.
DOBJ	United <i>diverted</i> the flight to Reno.
	We <i>booked</i> her the first flight to Miami.
IOBJ	We booked her the flight to Miami.
NMOD	We took the morning <i>flight</i> .
AMOD	Book the cheapest <i>flight</i> .
NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .
APPOS	United, a unit of UAL, matched the fares.
DET	The <i>flight</i> was canceled.
	Which <i>flight</i> was delayed?
CONJ	We <i>flew</i> to Denver and drove to Steamboat.
CC	We flew to Denver and drove to Steamboat.
CASE	Book the flight through Houston.

Dependency Parsing - Example



Named Entities

Named Entity Recognition

- Classify words into predefined categories:
 - persons
 - organizations
 - locations
 - expressions of times
 - quantities
 - monetary values
 - percentages

Slide from Federico Nanni

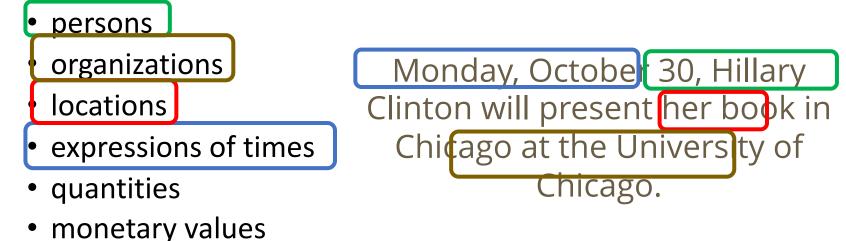
Named Entity Recognition

- Classify words into predefined categories:
 - persons
 - organizations
 - locations
 - expressions of times
 - quantities
 - monetary values
 - percentages

Monday, October 30, Hillary Clinton will present her book in Chicago at the University of Chicago.

Named Entity Recognition

Classify words into predefined categories:



percentages

Approaches for NER

- regular expression to extract:
- Gazetteers
- Patterns
- Machine Learning

Slide from Federico Nanni

Approaches for NER – Regular Expressions

- Extract:
 - telephone numbers
 - E-mails
 - Dates
 - Prices
 - Locations (e.g., word + "river" indicates a river -> Hudson river)

Slide from Federico Nanni

Approaches for NER - Gazetteers

- Dictionaries or list of proper names of:
 - Person
 - Location
 - Organization

Approaches for NER – Context Patterns

- context patterns, such as:
 - [Person] earns [Money]
 - [PERSON] joined [ORGANIZATION]
 - [PERSON] fly to [LOCATION]

Summary

- Course overview & Logistics
- Simple Text Processing: words, words, words
 - Tokenization
 - Lemmatization
 - Stemming
 - Stopwords
 - Part of Speech
 - Dependency Parsing
 - Named Entities

TODOs

- Read the assigned reading for Monday's lecture:
 - Language Modeling
- HW00
- Reading Response 01