
cs380
Nov 12

File layout in Android
Androiding

The src/main subdirectory
• More importantly, the structure visible in Android Studio echoes this directory (plus some)

Almost everything you do is here!

More in res

• Layout
• Design screens in app

• Almost total separation presentation from preparation
• In any but very small shops, there a people who never work outside of the res directory and its files — in

particular the layout system
• demo changing background color

• Menu:
• organizes dropdown and slideout menus

• demo add menu item to 3 dots
• Navigation

• In a fragment-based system, (like the basic app) this can define a set of transitions
• This is not always in use.

Measuring/positioning things
• px (Pixels) -

• Actual pixels or dots on the screen.
• in (Inches) -

• Physical size of the screen in inches.
• mm (Millimeters) -

• Physical size of the screen in millimeters.
• pt (Points)

• 1/72 of an inch.
• dp (Density-independent Pixels) -

• An abstract unit that is based on the physical density of the
screen. These units are relative to a 160 dpi screen, so one dp is
one pixel on a 160 dpi screen. The ratio of dp-to-pixel will change
with the screen density, but not necessarily in direct proportion.

• “dip" and "dp" are same.
• sp (Scale-independent Pixels)

• Similar to dp unit, but also scaled by the user's font size preference

• cm, mm, in
• centimeters, millimeters, inches (1in = 96px = 2.54cm)

• px, pt, pc
• pixels (1px = 1/96th of in), points (1pt = 1/72 of in), picas (1pc = 12 pt = 1/844 of in)

• em
• Relative to the font-size of the element (2em means 2 times the size of the current

font)
• ex

• Relative to the x-height of the current font (rarely used)
• ch

• Relative to the width of the "0" (zero)
• rem

• Relative to font-size of the root element
• vw (vh)

• Relative to 1% of the width, height of the viewport*
• vmin (vmax)

• Relative to 1% of viewport's* smaller (larger) dimension
• %

• Relative to the parent element

HTMLAndroid

In many functions, the only units actually available is pt, so if you
want others you have to do it yourself

Files in Practice

• Changing the text — what happened?

• layout/fragment_first.xml

• android:text=….

• Xml gets rendered out into Java code which then shows in app

• Looking at documentation you can see all of the options for customizing

• Google expects you will use XML to develop screens, not required.

• Why?

• Why Not?

• Change text, change text color, change background color, textSize, all caps in button …

• links to values/strings.xml, color.xml

• Why the indirection?

Looking at and mucking with the base app

Backing up — Fragments and Activities
• What is a fragment?

• “A fragment represents a behavior or a portion of user interface”

• You can think of a fragment as a modular section of an activity, which has its own
lifecycle, receives its own input events,

• oncreate, onCreateView, onPause

• What is an Activity?

• Every App has one — any/most have more than one

• Each activity has its own lifecycle

• onCreate, onStart, onResume, onPause, onStop, onRestart, onDestroy

•

LifecyclesFragment Activity

Getting back to Fragments

• How again does that “rendering out”? when?

• FragmentFour comes in two pieces:

• FragmentFour.java

• fragment_four.xml

• only real linkage between java and xml is in “return inflater.inflate …”

• Otherwise names are just names but it is good to use related names

• navigation.xml

• specifies the transitions between fragments

• Want fragment 4 to be started from fragment 2, and can be either 3 or 4 from 2

• From fragment 4 transition to fragment 1

Just because Google wants you to does not mean you have to
• Doing everything in code (almost)!!!

• For transitions between fragments:

• Instead of “inflater.inflate …. ” in onCreateView just return a LayoutManager of fragments

• In either onCreateView or onViewCreated add components to the layout

FragmentManager fragmentManager = this.getSupportFragmentManager();
FragmentTransaction transaction = fragmentManager.beginTransaction();
transaction.replace(R.id.main_actv, new FirstFragment(), null);
transaction.addToBackStack(null);
transaction.commit();

LinearLayout ll = new LinearLayout(getContext());
ll.setId(FirstFragment.FIRST_FRAG_ID);
ll.setOrientation(LinearLayout.VERTICAL);
return ll;

More doing it Programatically

• Make the “Layout Manager” a LinearLayout (more on layout managers later)

• Then create and add items

•

LinearLayout ll = new LinearLayout(getContext());
ll.setId(FirstFragment.FIRST_FRAG_ID);
ll.setOrientation(LinearLayout.VERTICAL);

TextView v = new TextView(getContext());
v.setTextColor(Color.WHITE);
v.setTextSize(48);
v.setGravity(Gravity.CENTER);
v.setBackgroundColor(Color.rgb(128, 0, 25));
ll.addView(v, new LinearLayout.LayoutParams(ViewGroup.LayoutParams.MATCH_PARENT, 0, 2));

