File layout in Android
Androiding

CCCCC

' 1: Project

* More importantly, the structure visible in Android Studio echoes this directory (plus some)

o> Resource Manager

The src/main subdirectory

Almost everything you do is here!

v LabSix
v app
Android D = 1 > W build
build.gradle
app > libs
. _g proguard-rules.pro
manifests S ———
java > androidTest
v main
com —P @ AndroidManifest.xml
example —> v [java
. v com
labsix example
€ FirstFragment v [labsix
o « o _g FirstFragment.java
€ Mai nACtIVIty o MainActivity.java
€ SecondFragment & SecondFragment.java
: v res
com (androidTest) > 0 drawable
com (test) > drawable-v24
. —> = layout
java (generated) . m‘;nu
res > > mipmap-anydpi-v26
> mipmap-hdpi
drawable > BB mipmap-mdp
Iayout - > mipmap-xhdpi
> mipmap-xxhdpi
menu > mipmap-xxxhdpi
mipmap — — P navigation
navigation —> > WWvalues
/ B values-night
values

test

>
res (generated) : —» build.gradle
. a0 gradle
/@ Gradle Scripts

Moreinres

* Layout
* Design screens in app
* Almost total separation presentation from preparation

* In any but very small shops, there a people who never work outside of the res directory and its files — in
particular the layout system

* demo changing background color
* Menu:
* organizes dropdown and slideout menus
* demo add menu item to 3 dots
* Navigation
* In a fragment-based system, (like the basic app) this can define a set of transitions

* This is not always in use.

Measuring /positioning things

Android HTML
* px (Pixels) - * cm, mm, in
* Actual pixels or dots on the screen. * centimeters, millimeters, inches (1in = g6px = 2.54cm)
* in (Inches) - ° px, pt, pc

* Physical size of the screen in inches. * pixels (1px =1/96th of in), points (1pt =1/72 of in), picas (1pc =12 pt =1/844 of in)

mm (Millimeters) - em

. * Relative to the font-size of the element (2em means 2 times the size of the current
Physical size of the screen in millimeters. font)

pt (Points) * ex

* 1/72 of an inch. * Relative to the x-height of the current font (rarely used)

* dp (Density-independent Pixels) - * ch
* An abstract unit that is based on the physical density of the * Relative to the width of the "0" (zero)
screen. These units are relative to a 160 dpi screen, so one dp is ¢ em
one pixel on a 160 dpi screen. The ratio of dp-to-pixel will change
with the screen density, but not necessarily in direct proportion. Relative to font-size of the root element
. « * vw (vh)

dip" and "dp" are same.

sp (Scale-independent Pixels) * Relative to 1% of the width, height of the viewport*

o« : : : vmin (vmax
Similar to dp unit, but also scaled by the user's font size preference ()

* Relative to 1% of viewport's* smaller (larger) dimension

In many functions, the only units actually available is pt, so if you " %
want others you have to do it yourself * Relative to the parent element

Files in Practice

Looking at and mucking with the base app

* Changing the text — what happened?
* layout/fragment_first.xml
* android:text=....
* Xml gets rendered out into Java code which then shows in app
* Looking at documentation you can see all of the options for customizing
* Google expects you will use XML to develop screens, not required.
* Why?
* Why Not?
* Change text, change text color, change background color, textSize, all caps in button ...
* links to values/strings.xml, color.xml

* Why the indirection?

Backing up — Fragments and Activities

* Whatis a fragment?
* “A fragment represents a behavior or a portion of user interface”

* You can think of a fragment as a modular section of an activity, which has its own
lifecycle, receives its own input events,

* oncreate, onCreateView, onPause
* What is an Activity?
* Every App has one — any/most have more than one
* Each activity has its own lifecycle

* onCreate, onStart, onResume, onPause, onStop, onRestart, onDestroy

Activity

Fragment Lifecycles

Fragment Fragment
Start End
> onCreate()
.
OnAttach OnDetach onStart() - onRestart()
¢ A

User navigates

onResume() -

to the activity
OnCreate OnDestroy | .
(App process) Activity
running
. . A
OnCreateView OnDestroyView Another activity comes
into the foreground
User returns
+ to the activity
Apps with higher priority onPause() J

OnActivityCreated need memory |

The activity is
no longer visible

User navigates
* to the activity

onStop())
|

The activity is finishing or
being destroyed by the system
OnResume OnPause ‘

OnStop

onDestroy()

Fragment ‘

Is Running (Activity)

Getting back to Fragments

* How again does that “rendering out”? when?
* FragmentkFour comes in two pieces:
* Fragmentkour.,java
* fragment_four.xml
* only real linkage between java and xml is in “return inflater.inflate ..
* Otherwise names are just names but it is good to use related names
* navigation.xml
* specifies the transitions between fragments
* Want fragment 4 to be started from fragment 2, and can be either 3 or 4 from 2

* From fragment 4 transition to fragment 1

Just because Google wants you to does not mean you have to

* Doing everything in code (almost)!!!

* For transitions between fragments:

FragmentManager fragmentManager = this.getSupportFragmentManager();
FragmentTransaction transaction = fragmentManager.beginTransaction();
transaction.replace(R.1id.main actv, new FirstFragment(), null);
transaction.addToBackStack(null);

transaction.commit () ;

* Instead of “inflater.inflate ” in onCreateView just return a LayoutManager of fragments

LinearLayout 11 = new LinearLayout(getContext());
1l.setId(FirstFragment.FIRST FRAG ID);

ll.setOrientation(LinearLayout.VERTICAL);
return 11;

* In either onCreateView or onViewCreated add components to the layout

More doing it Programatically

* Make the “Layout Manager” a LinearLayout (more on layout managers later)

LinearLayout 11 = new LinearLayout(getContext());
ll.setId(FirstFragment.FIRST FRAG ID);
ll.setOrientation(LinearLayout.VERTICAL) ;

* Then create and add items

TextView v = new TextView(getContext());

v.setTextColor(Color.WHITE) ;

v.setTextSize(48);

v.setGravity(Gravity.CENTER) ;

v.setBackgroundColor(Color.rgb(128, 0, 25));

l1l.addView(v, new LinearLayout.LayoutParams (ViewGroup.LayoutParams.MATCH PARENT, 0, 2));

