
cs380
Nov 5

Relational DB Design
The logic of file layout in Android

Suppose a Database

https://phpbuilder.com/database-normalization-and-design-techniques/
https://phpbuilder.com/database-normalization-and-design-techniques-page-2/
https://phpbuilder.com/database-normalization-and-design-techniques-page-3/
https://phpbuilder.com/database-normalization-and-design-techniques-page-4/
https://phpbuilder.com/database-normalization-and-design-techniques-page-5/

create table users0 (
 name varchar(20) NOT NULL,
 company varchar(20) not null,
 company_address varchar(20) not null,
 url1 varchar(20) not null,
 url2 varchar(20) not null
);
insert into users0 (name, company,
company_address, url1, url2) values ('Joe',
'ABC', '1 work Lane', 'abc.com', 'xyz.com');
insert into users0 (name, company,
company_address, url1, url2) values ('Jill',
'XYZ', 'i Job Street', 'abc.com', 'xyz.com');

Query to get all info from this
database (i.e., users0 table)?

https://phpbuilder.com/database-normalization-and-design-techniques-page-3/
https://phpbuilder.com/database-normalization-and-design-techniques-page-3/
https://phpbuilder.com/database-normalization-and-design-techniques-page-3/
https://phpbuilder.com/database-normalization-and-design-techniques-page-4/

DataBase Normalization — 1NF
• First Normal Form — There are no multi-valued

attributes

• Eliminate repeating groups in individual tables.

• e.g. the url1 & url2 fields

• Create a separate table for each set of related data.

• Identify each set of related data with a primary key.

• So make a “userID” field to indicate that Joe in
rows 1 and 2 is the same Joe

create table users1 (
 name varchar(20) NOT NULL,
 company varchar(20) not null,
 company_address varchar(20) not null,
 url varchar(20) not null,
);
insert into users1 (name, company, company_address, url)
values ('Joe', 'ABC', '1 work Lane', 'abc.com');
insert into users1 (name, company, company_address, url)
values ('Jill', 'XYZ', 'i Job Street', 'xyz.com');
insert into users1 (name, company, company_address, url)
values ('Joe', 'ABC', '1 work Lane', 'abc.com');
insert into users1 (name, company, company_address, url)
values ('Jill', 'XYZ', 'i Job Street', 'xyz.com');

Query to get all
info from this
database (i.e.,
users1 table)?

DataBase Normalization — 2NF
• Second Normal Form — Non-key fields must be dependent upon the entire key

• Create separate tables for sets of values that apply to multiple records.
• e.g. the URL field for first normal form

• Relate these tables with a foreign key.
• reluserid in URLs is a foreign key to userid in users

create table users2 (
 userid int AUTO_INCREMENT PRIMARY KEY,
 name varchar(20) NOT NULL,
 company varchar(20) not null,
 company_address varchar(20) not null
);
insert into users2 (name, company, company_address)
values ('Joe', 'ABC', '1 work Lane');
insert into users2 (name, company, company_address)
values ('Jill', 'XYZ', 'i Job Street');

create table urls2 (
 urlid int AUTO_INCREMENT PRIMARY KEY,
 relUserId int,
 url varchar(20),
 FOREIGN KEY(RelUserId) REFERENCES users2(userid)
);
insert into urls2 (reluserid, url)
values (1, 'abc.com');
insert into urls2 (reluserid, url)
values (1, 'xyz.com');
insert into urls2 (reluserid, url)
values (2, 'abc.com');
insert into urls2 (reluserid, url)
values (2, 'xyz.com');

Query to get all info from this
database (i.e., users2 and
urls2 tables)?

DataBase Normalization — 3NF
• Third Normal Form

• Eliminate fields that do not depend on the key.

• The company affiliation of Joe and Jill is
NOT an attribute of those people and may
be shared

create table company3 (
 companyID int AUTO_INCREMENT PRIMARY KEY,
 company varchar(20),
 company_address varchar(20)
);
insert into company3 (company, company_address)
values ('ABC', '1 Work Lane');
insert into company3 (company, company_address)
values ('XYZ', '1 Job Street');
create table user3 (
 userid int AUTO_INCREMENT PRIMARY KEY,
 name varchar(20) NOT NULL,
 RelCompanyId int,
 FOREIGN KEY(RelCompanyId) REFERENCES
company3(companyID)
);
insert into user3 (name, RelCompanyId) values
('Joe', 1);
insert into user3 (name, RelCompanyId) values
('Jill', 2);
/** table urls3 is identical to tables urls2 **/

Query to get all info from this
database (i.e., company3,
users3, and urls3 tables)?

DataBase Normalization — 4NF
• The URLs table has info in it that is not an

attribute of the URL. Namely the “reluser” column.

• This feels wrong.

• Clean up by replacing the URL table with two:

• URLs and URL_relations

• Fourth Normal Form

• In a many-to-many relationship, independent
entities can not be stored in the same table.

/** company4 and user4 exactly follow company3 and user3 **/
create table urls4 (
 urlid int AUTO_INCREMENT PRIMARY KEY,
 url varchar(20)
);
insert into urls4 (url) values ('abc.com');
insert into urls4 (url) values ('xyz.com');
create table url_rel4 (
 relationID int AUTO_INCREMENT PRIMARY KEY,
 RelURLid int,
 RelCompanyID int,
 FOREIGN KEY(RelURLid) REFERENCES urls4(urlid),
 FOREIGN KEY(RelCompanyId) REFERENCES company4(companyID)
);
insert into url_rel4 (RelURLid, relcompanyid) values (1, 1);
insert into url_rel4 (RelURLid, relcompanyid) values (1, 2);
insert into url_rel4 (RelURLid, relcompanyid) values (2, 1);
insert into url_rel4 (RelURLid, relcompanyid) values (2, 2);

Inserts into normalized DBs

• Auto increments id fields are really handy BUT

• how do you know what they are when you insert into another table?

• E.g.,

• Need to do insert that uses a query!

• Simplest version of insert using a query

• This violates RDB principle of only storing data once!

• More useful

• .

insert into user3 (name, RelCompanyId) values ('Joe', 1);
insert into user3 (name, RelCompanyId) values ('Jill', 2);

INSERT INTO tableC (c1, c2, c3) SELECT dd1, dd2,dd3 FROM tableDD;

insert into user4 (name, RelCompanyId) select 'Joe',company4.companyid
from company4 where company4.company='ABC';

Querying this database

• Insert for URL_RELATIONS table

• List all of XYZ’s urls

• List all employees of company XYZ

• List all employees of the company that Joe works for

• How many companies are in the database?

Representing a database
Users

UserID

Name

CompIdCompanies

CompId

Company

C Address

URL
Relations
RelationID

UserID

URLidURLs

URLid

URL

CompId

• Table Name at the top (grey background)

• Primary key next (green background)

• Arrows indicate foreign keys

• Numbers by arrows indicate type of relationship

1

1
1

1

∞∞

∞

∞

Keys relation in enforced by DB
• One-to-One

CREATE TABLE Country
(
Pk_Country_Id INT PRIMARY
KEY,
Name VARCHAR(100),
Officiallang VARCHAR(100),
Size INT(11)
);

CREATE TABLE UNrep
(
Pk_UNrep_Id INT PRIMARY KEY,
Name VARCHAR(100),
Gender VARCHAR(100),
Fk_Country_Id INT UNIQUE,
FOREIGN KEY(Fk_Country_Id)
REFERENCES
Country(Pk_Country_Id)
);

• One-to-Many
CREATE TABLE Car
(
Pk_Car_Id INT PRIMARY KEY,
Brand VARCHAR(100),
Model VARCHAR(100)
);

CREATE TABLE Engineer
(
Pk_Engineer_Id INT PRIMARY
KEY,
FullName VARCHAR(100),
MobileNo CHAR(11),
Fk_Car_Id INT,
FOREIGN KEY(Fk_Car_Id)
REFERENCES Car(Pk_Car_Id)
);

• Many-to-Many
CREATE TABLE Student(
StudentID INT(10),
Name VARCHAR(100),
PRIMARY KEY(studentID)
);

CREATE TABLE Class(
ClassID INT(10) PRIMARY KEY,
Course VARCHAR(100)
);

CREATE TABLE StudentClassRelation(
Fk_StudentID INT(15) NOT NULL,
Fk_ClassID INT(14) NOT NULL,
FOREIGN KEY (Fk_StudentID) REFERENCES
Student(StudentID),
FOREIGN KEY (Fk_ClassID) REFERENCES
Class(ClassID),
UNIQUE (StudentID, ClassID)
);

Country

Pk_Country_id

Name

Lang

Size

UNRep

Pk_UNrep_id

Name

Gender

FKCountryId

1

1

∞

1

Engineer

Pk_ENgineer_id

FullName

etc

Fk_Car_Id

Car

Pk_Car_id

Brand

Model

StudentClass

Fk_ClassId

Fk_StudentId

Class

ClassId

Course

etc

Student

Studentd

Name

etc

1 1
∞

∞

Use 2 1-∞
relations to

create a ∞-∞
relation

Database creation tips
• Keep data items atomic (e.g., first and last names are separate). Concatenating columns together later on-the-fly is generally easy, but separating them is

not. (First Normal Form)
• Define the primary key first. Use a descriptive name — CompanyID rather than just ID
• Use a single column for the primary key whenever possible; multi-column primary keys are appropriate for many-to-many relationships but rarely

otherwise
• Use lookup tables rather than storing long values

• Lookup tables are tables that have a key and a name … for instance: urls4, company4 table … They tend to be static
• “lookup table” is in the eye of the beholder

• Use numeric keys whenever possible (What about ZIP codes?)
• Avoid using multiple columns to represent a one-to-many relationship (e.g., columns such as URL1 and URL2 in users0 table) rather than putting the

children in a separate table. (First Normal Form)
• For readability, use the primary key name for foreign keys unless the same foreign key is used multiple times in the same table

• Often add a prefix to names to indicate FK relation — for instance “fk_” or “rel”
• Do not include two columns whose values are linked together (e.g., county name and county ID) unless one of the columns is the primary key of the

table (Third Normal Form)
• Avoid allowing NULL values in columns that have a discrete range of possible values (e.g., integers between 1 and 10, inclusive)
• Avoid using multiple tables with similar structures that represent minor variants on the same entity (e.g., putting Boston parcels and Cambridge parcels

in separate tables).

Android File Layout

• When you create a project, a directory is created that shares the name of your project
• Typically in a folder name “AndroidStudioProjects” or something similar

• Everything important is in the “app” directory
• Subdirs:

• build — exactly what you think
• libs — java jars and the like — often empty
• src — everything you do is here

• AndroidTest
• test cases — testing code for android function (for discussion take Software Engineering in spring)

• main
• the actual running code

• test
• test cases - for other stuff

where things are and why they are there

The src/main subdirectory
• More importantly, the structure visible in Android Studio echoes this directory (plus some)

Almost everything you do is here!

So what are all of these files????
• Manifest

• Shows as a directory in AS but it it usually just one file, not a directory in file system
• Usually just contains one file: AndroidManifest.xml

• set the visible name and icon of your app
• controls how other apps can interact with your app

• compare lab6 with vb
• Gradle Scripts

• Gradle is the system that AS uses to assemble and compile the app
• There are two(!) build.gradle files.

• This is useful in very big, multi-person projects. Otherwise just annoying
• compare lab6 with vb

• targetsdk, vs minsdk
• Lots of other things

• proguard — Java obfuscation — why?
• assets

• folder not created by default but really useful.
• put static data files used by your app in here. (e.g., json, csv, or xml data files)

• Why not put these on a server and download (and then cache)

The res directory

• drawable / drawable-v24
• Images. 2 directories allow you to have identical images with different resolutions.

• There uses to be a billion of these directories
• mipmap* — “multum in parvo” — “much in little”

• app/launcher icons. Lots of directories to support lots of different sized devices.
• You might make a very different image for 20x20 than you would for 40x40. The directories allow you to do so.

• the default icon in mipmap-mdpi is 48x48.
• In xxxhdpi it is 192x192

• Values
• strings.xml

• ideally, all user-facing strings are in this file
• Internationalization!
• AS: right-click on string in code to get a dialog to move it to strings.xml.

• colors.xml, …

Separating presentation and preparation

More in res

• Layout

• Design screens in app

• Almost total separation presentation from preparation

• In any but very small shops, there a people who never work outside of the res directory and its
files — in particular the layout system

• The separation is not perfect

• The menu and the email button

• Menu:

• organizes dropdown and slideout menus

• demo add menu item to 3 dots

Measuring/positioning things
• px (Pixels) -

• Actual pixels or dots on the screen.
• in (Inches) -

• Physical size of the screen in inches.
• mm (Millimeters) -

• Physical size of the screen in millimeters.
• pt (Points)

• 1/72 of an inch.
• dp (Density-independent Pixels) -

• An abstract unit that is based on the physical density of the
screen. These units are relative to a 160 dpi screen, so one dp is
one pixel on a 160 dpi screen. The ratio of dp-to-pixel will change
with the screen density, but not necessarily in direct proportion.
"dip" and "dp" are same.

• sp (Scale-independent Pixels)
• Similar to dp unit, but also scaled by the user's font size preference

• cm, mm, in
• centimeters, millimeters, inches (1in = 96px = 2.54cm)

• px, pt, pc
• pixels (1px = 1/96th of in), points (1pt = 1/72 of in), picas (1pc = 12 pt = 1/844 of in)

• em
• Relative to the font-size of the element (2em means 2 times the size of the current

font)
• ex

• Relative to the x-height of the current font (rarely used)
• ch

• Relative to the width of the "0" (zero)
• rem

• Relative to font-size of the root element
• vw (vh)

• Relative to 1% of the width, height of the viewport*
• vmin (vmax)

• Relative to 1% of viewport's* smaller (larger) dimension
• %

• Relative to the parent element

HTMLAndroid

