Lecture 23

CMSC 350: COMPILER DESIGN
CODE ANALYSIS
Motivating Code Analyses

• There are lots of things that might influence the safety/applicability of an optimization
 – What algorithms and data structures can help?

• How do you know what is a loop?
• How do you know an expression is invariant?
• How do you know if an expression has no side effects?
• How do you keep track of where a variable is defined?
• How do you know where a variable is used?
• How do you know if two reference values may be aliases of one another?
Moving Towards Register Allocation

• The Tiger compiler currently generates as many temporary variables as it needs
 – These are the %uids you should be very familiar with by now.

• Current compilation strategy:
 – Each %uid maps to a stack location.
 – This yields programs with many loads/stores to memory.
 – Very inefficient.

• Ideally, we’d like to map as many %uid’s as possible into registers.
 – Eliminate the use of the alloca instruction?
 – Only 10 general-purpose registers available on HERA
 – This means that a register must hold more than one slot

• When is this safe?
Liveness

- Observation: \%uid1 and \%uid2 can be assigned to the same register if their values will not be needed at the same time.
 - What does it mean for an \%uid to be “needed”? Ans: its contents will be used as a source operand in a later instruction.
- Such a variable is called “live”
- Two variables can share the same register if they are not live at the same time.
Scope vs. Liveness

• We can already get some coarse liveness information from variable scoping.
• Consider the following Tiger program:

  ```tiger
  function f(x: int): int = (  
    let var a := 0 in  
    if x > 0 then  
      let var b := x * x in  
      a := b + b  
      end  
    let var c := a * x in  
    c  
  end end)
  ```

• Note that due to Tiger’s scoping rules, variables \(b\) and \(c\) can never be live at the same time.
 – \(c\)’s scope is disjoint from \(b\)’s scope
• So, we could assign \(b\) and \(c\) to the same allocat’ed slot and potentially to the same register.
But Scope is too Coarse

• Consider this Java program:

```java
int f(int x) {
    int a = x + 2;
    int b = a * a;
    int c = b + x;
    return c;
}
```

• The scopes of a, b, c, x all overlap – they’re all in scope at the end of the block.
• But, a, b, c are never live at the same time.
 – So they can share the same stack slot / register
Live Variable Analysis

- A variable v is *live* at a program point if v is defined before the program point and used after it.
- Liveness is defined in terms of where variables are *defined* and where variables are *used*.

- Liveness analysis: Compute the live variables between each statement.
 - May be *conservative* (i.e. it may claim a variable is live when it isn’t) because that’s a safe approximation.
 - To be useful, it should be more *precise* than simple scoping rules.

- Liveness analysis is one example of *dataflow analysis*.
 - Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, ...
Control-flow Graphs Revisited

• For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form.

• Recall that a basic block is a sequence of instructions such that:
 – There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
 – There is a (possibly empty) sequence of non-control-flow instructions
 – The block ends with a single control-flow instruction (jump, conditional branch, return, etc.)

• A control flow graph
 – Nodes are blocks
 – There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2
 – There are no “dangling” edges – there is a block for every jump target.

• Note: the following slides are intentionally a bit ambiguous about the exact nature of the code in the control flow graphs:
 – at the HERA assembly level
 – an “imperative” C-like source level
 – at the LLVM IR level
 – Same general idea, but the exact details will differ
 • e.g. LLVM IR doesn’t have “imperative” update of %uid temporaries.
 • In fact, the SSA structure of the LLVM IR makes some of these analyses simpler.
Dataflow over CFGs

- For precision, it is helpful to think of the “fall through” between sequential instructions as an edge of the control-flow graph too.
 - Different implementation tradeoffs in practice…

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges
Liveness is Associated with *Edges*

- This is useful so that the same register can be used for different temporaries in the same statement.
- Example: \(a = b + 1 \)

- Compiles to:

 - \(\text{MOVE}(a,b) \)
 - \(\text{INC}(a,1) \)
 - \(\text{MOVE}(\text{R1},\text{R1}) \)
 - \(\text{INC}(\text{R1},1) \)

 register allocation:
 - \(a \rightarrow \text{R1}, b \rightarrow \text{R1} \)
 - live: \(a, b \)
 - live: \(b, d, e \)
 - live: \(a \) (maybe)
Uses and Definitions

• Every instruction/statement uses some set of variables
 – i.e. reads from them
• Every instruction/statement defines some set of variables
 – i.e. writes to them

• For a node/statement \(s \), define the following:
 – \(\text{use}[s] \) : set of variables used by \(s \)
 – \(\text{def}[s] \) : set of variables defined by \(s \)

• Examples:
 – \(a = b + c \) \hspace{1cm} \text{use}[s] = \{b,c\} \hspace{1cm} \text{def}[s] = \{a\}
 – \(a = a + 1 \) \hspace{1cm} \text{use}[s] = \{a\} \hspace{1cm} \text{def}[s] = \{a\}
Liveness, Formally

• A variable v is *live* on edge e if:
 There is
 – a node n in the CFG such that $use[n]$ contains v, *and*
 – a directed path from e to n such that for every statement s' on the path, $def[s']$ does not contain v

• The first clause says that v will be used on some path starting from edge e.
• The second clause says that v won’t be redefined on that path before the use.

• Questions:
 – How to compute this efficiently?
 – How to use this information (e.g. for register allocation)?
 – How does the choice of IR affect this? (e.g. LLVM IR uses SSA, so it doesn’t allow redefinition \Rightarrow simplify liveness analysis)
Simple, inefficient algorithm

• “A variable \(v \) is live on an edge \(e \) if there is a node \(n \) in the CFG using it \(\text{and} \) a directed path from \(e \) to \(n \) passing through no def of \(v \).”

• Backtracking Algorithm:
 – For each variable \(v \)…
 – Try all paths from each use of \(v \), tracing backwards through the control-flow graph until either \(v \) is defined or a previously visited node has been reached.
 – Mark the variable \(v \) live across each edge traversed.

• Inefficient because it explores the same paths many times (for different uses and different variables)
Dataflow Analysis

- **Idea**: compute liveness information for all variables simultaneously.
 - Keep track of sets of information about each node

- **Approach**: define *equations* that must be satisfied by any liveness determination.
 - Equations based on “obvious” constraints.

- **Solve the equations** by iteratively converging on a solution.
 - Start with a “rough” approximation to the answer
 - Refine the answer at each iteration
 - Keep going until no more refinement is possible: a *fixpoint* has been reached

- This is an instance of a general framework for computing program properties: dataflow analysis
Dataflow Value Sets for Liveness

- Nodes are program statements, so:
 - \text{use}[n] : set of variables used by n
 - \text{def}[n] : set of variables defined by n
 - \text{in}[n] : set of variables live on entry to n
 - \text{out}[n] : set of variables live on exit from n
 - \text{succ}[n] : set of nodes reachable in one step from n

- Associate \text{in}[n] and \text{out}[n] with the “collected” information about incoming/outgoing edges

- For Liveness: what constraints are there among these sets?
 - Clearly:
 \[
 \text{in}[n] \supseteq \text{use}[n]
 \]

- What other constraints?
Other Dataflow Constraints

- We have: \(\text{in}[n] \supseteq \text{use}[n] \)
 - “A variable must be live on entry to \(n \) if it is used by \(n \)”

- Also: \(\text{in}[n] \supseteq \text{out}[n] - \text{def}[n] \)
 - “If a variable is live on exit from \(n \), and \(n \) doesn’t define it, it is live on entry to \(n \)”
 - Note: here ‘-' means “set difference”

- And: \(\text{out}[n] \supseteq \text{in}[n'] \) if \(n' \in \text{succ}[n] \)
 - “If a variable is live on entry to a successor node of \(n \), it must be live on exit from \(n \)”
Iterative Dataflow Analysis

- Find a solution to those constraints by starting from a rough guess.
- Start with: \(\text{in}[n] = \emptyset \) and \(\text{out}[n] = \emptyset \)
- They don’t satisfy the constraints:
 - \(\text{in}[n] \supseteq \text{use}[n] \)
 - \(\text{in}[n] \supseteq \text{out}[n] - \text{def}[n] \)
 - \(\text{out}[n] \supseteq \text{in}[n'] \) if \(n' \in \text{succ}[n] \)

- Idea: iteratively re-compute \(\text{in}[n] \) and \(\text{out}[n] \) where forced to by the constraints.
 - Each iteration will add variables to the sets \(\text{in}[n] \) and \(\text{out}[n] \)
 (i.e. the live variable sets will increase monotonically)

- We stop when \(\text{in}[n] \) and \(\text{out}[n] \) satisfy these equations:
 (which are derived from the constraints above)
 - \(\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \)
 - \(\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
Complete Liveness Analysis Algorithm

for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’
 for all n
 out[n] := \(\bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
 in[n] := use[n] \(\cup (\text{out}[n] - \text{def}[n]) \)
 end
end

• Finds a fixpoint of the in and out equations.
 – The algorithm is guaranteed to terminate… Why?
• Why do we start with Ø?
Example Liveness Analysis

- Example flow graph:

```cpp
e = 1;
while(x>0) {
    z = e * e;
y = e * x;
x = x - 1;
    if (x & 1) {
        e = z;
    } else {
        e = y;
    }
}
return x;
```
Example Liveness Analysis

Each iteration update:
\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

- **Iteration 1:**
 \[
 \begin{align*}
 \text{in}[2] &= x \\
 \text{in}[3] &= e \\
 \text{in}[4] &= x \\
 \text{in}[5] &= e, x \\
 \text{in}[6] &= x \\
 \text{in}[7] &= x \\
 \text{in}[8] &= z \\
 \text{in}[9] &= y
 \end{align*}
 \]

 (showing only updates that make a change)
Each iteration update:

- **Iteration 2:**

 out[1] = x
 in[1] = x
 out[2] = e, x
 in[2] = e, x
 out[3] = e, x
 in[3] = e, x
 out[5] = x
 in[5] = x
 out[6] = x
 in[6] = e, x
 out[7] = z, y
 in[7] = x, z, y
 out[8] = x
 in[8] = x, z
 out[9] = x
 in[9] = x, y
Example Liveness Analysis

Each iteration update:
\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

- **Iteration 3:**
 - \text{out}[1] = e, x
 - \text{out}[6] = x, y, z
 - \text{in}[6] = x, y, z
 - \text{out}[7] = x, y, z
 - \text{out}[8] = e, x
 - \text{out}[9] = e, x
Example Liveness Analysis

Each iteration update:
\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

- Iteration 4:
 \[\text{out}[5] = x, y, z \]
 \[\text{in}[5] = e, x, z \]
Example Liveness Analysis

Each iteration update:
\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
\[
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- **Iteration 5:**
 \[
 \text{out}[3] = e, x, z
 \]

Done!
Improving the Algorithm

• Can we do better?

• Observe: the only way information propagates from one node to another is using: \(\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
 – This is the only rule that involves more than one node

• If a node’s successors haven’t changed, then the node itself won’t change.

• Idea for an improved version of the algorithm:
 – Keep track of which node’s successors have changed
A Worklist Algorithm

- Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes
repeat until w is empty
 let n = w.pop() // pull a node off the queue
 old_in = in[n] // remember old in[n]
 out[n] := ∪_n'∈succ[n] in[n']
 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed
 for all m in pred[n], w.push(m) // add to worklist
end