Creating an abstract representation of program syntax.

PARSING
Today: Parsing

Source Code (Character stream)
if (b == 0) { a = 1; }

Token stream:
if (b == 0) { a = 0 ; }

Abstract Syntax Tree:
If
 Eq
 b
 Assn
 0
 a
 1
 None

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2, label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
...
{ if (b == 0) a = b;
while (a != 1) {
 print_int(a);
 a = a - 1;
}
} Source input

Abstract Syntax tree
Syntactic Analysis (Parsing): Overview

- Input: stream of tokens (generated by lexer)
- Output: abstract syntax tree

Strategy:
- Parse the token stream to traverse the "concrete" syntax
- During traversal, build a tree representing the "abstract" syntax

Why abstract? Consider these three different concrete inputs:

\[
\begin{align*}
\text{a + b} \\
(a + ((b))) \\
((a) + (b))
\end{align*}
\]

Same abstract syntax tree

Note: parsing doesn’t check many things:
- Variable scoping, type agreement, initialization, ...
Specifying Language Syntax

• First question: how to describe language syntax precisely and conveniently?

• Last time: we described tokens using regular expressions
 – Easy to implement, efficient DFA representation
 – Why not use regular expressions on tokens to specify programming language syntax?

• Limits of regular expressions:
 – DFA’s have only finite # of states
 – So… DFA’s can’t “count”
 – For example, consider the language of all strings that contain balanced parentheses – easier than most programming languages, but not regular.

• So: we need more expressive power than DFA’s
CONTEXT FREE GRAMMARS
Context-free Grammars

• Here is a specification of the language of balanced parens:

\[
\begin{align*}
S & \rightarrow (S)S \\
S & \rightarrow \varepsilon
\end{align*}
\]

Note: Once again we have to take care to distinguish meta-language elements (e.g. “S” and “\(\rightarrow\)”) from object-language elements (e.g. “(“).*

• The definition is recursive – S mentions itself.

• Idea: “derive” a string in the language by starting with S and rewriting according to the rules:

 – Example: S \(\rightarrow\) (S)S \(\rightarrow\) ((S)S)S \(\rightarrow\) ((\varepsilon)S)S \(\rightarrow\) ((\varepsilon)S)\varepsilon \(\rightarrow\) ((\varepsilon)\varepsilon)\varepsilon = (())

• You can replace the “nonterminal” S by its definition anywhere

• A context-free grammar accepts a string iff there is a derivation from the start symbol

* And, since we’re writing this description in English, we are careful distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.
CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of terminals (e.g., a lexical token or ε)
 - A set of nonterminals (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - A set of productions: LHS ⟷ RHS
 - LHS is a nonterminal
 - RHS is a string of terminals and nonterminals

- Example: The balanced parentheses language:

 \[
 S \longrightarrow (S)S \\
 S \longrightarrow \varepsilon
 \]

- How many terminals? How many nonterminals? Productions?
Another Example: Sum Grammar

• A grammar that accepts parenthesized sums of numbers:

\[
\begin{align*}
S & \rightarrow E + S \mid E \\
E & \rightarrow \text{number} \mid (S)
\end{align*}
\]

e.g.: \((1 + 2 + (3 + 4)) + 5\)

• Note the vertical bar ‘|’ is shorthand for multiple productions:

\[
\begin{align*}
S & \rightarrow E + S \quad \text{4 productions} \\
S & \rightarrow E \quad \text{2 nonterminals: S, E} \\
E & \rightarrow \text{number} \quad \text{4 terminals: (,), +, number} \\
E & \rightarrow (S) \quad \text{Start symbol: S}
\end{align*}
\]
Derivations in CFGs

- Example: derive \((1 + 2 + (3 + 4)) + 5\)
- \(S \rightarrow E + S\)

 \[
 \begin{align*}
 \rightarrow & \quad (S) + S \\
 \rightarrow & \quad (E + S) + S \\
 \rightarrow & \quad (1 + S) + S \\
 \rightarrow & \quad (1 + E + S) + S \\
 \rightarrow & \quad (1 + 2 + S) + S \\
 \rightarrow & \quad (1 + 2 + E) + S \\
 \rightarrow & \quad (1 + 2 + (S)) + S \\
 \rightarrow & \quad (1 + 2 + (E + S)) + S \\
 \rightarrow & \quad (1 + 2 + (3 + S)) + S \\
 \rightarrow & \quad (1 + 2 + (3 + E)) + S \\
 \rightarrow & \quad (1 + 2 + (3 + 4)) + S \\
 \rightarrow & \quad (1 + 2 + (3 + 4)) + E \\
 \rightarrow & \quad (1 + 2 + (3 + 4)) + 5
 \end{align*}
\]

For arbitrary strings \(\alpha, \beta, \gamma\) and production rule \(A \rightarrow \beta\) a single step of the derivation is:

\[
\alpha A \gamma \rightarrow \alpha \beta \gamma
\]

(\textit{substitute} \(\beta\) for an occurrence of \(A\))

In general, there are many possible derivations for a given string.

Note: Underline indicates symbol being expanded.
From Derivations to Parse Trees

• Tree representation of the derivation
• Leaves of the tree are terminals
 – In-order traversal yields the input sequence of tokens
• Internal nodes: nonterminals
• No information about the order of the derivation steps

• \((1 + 2 + (3 + 4)) + 5\)

S \(\rightarrow\) E + S | E
E \(\rightarrow\) number | (S)

 Parse Tree
• **Parse tree:**
 “concrete syntax”

- S
 - E + S
 - (S)
 - E
 - E + S 5
 - E
 - E + S
 - (S)
 - E
 - E + S
 - (S)
 - 1
 - 2
 - E

• **Abstract syntax tree (AST):**

- +
 - + 5
 - 1
 - 2 +
 - 3 4

• **Hides, or *abstracts*, unneeded information.**
Derivation Orders

• Productions of the grammar can be applied in any order.
• There are two standard orders:
 – *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
 – *Rightmost derivation*: Find the right-most nonterminal and apply a production there.

• Note that both strategies (and any other) yield the same parse tree!
 – Parse tree doesn’t contain the information about what order the productions were applied.
Example: Left- and rightmost derivations

- **Leftmost derivation:**
 - $S \rightarrow E + S$
 - $\rightarrow (S) + S$
 - $\rightarrow (E + S) + S$
 - $\rightarrow (1 + S) + S$
 - $\rightarrow (1 + E + S) + S$
 - $\rightarrow (1 + 2 + S) + S$
 - $\rightarrow (1 + 2 + E) + S$
 - $\rightarrow (1 + 2 + (S)) + S$
 - $\rightarrow (1 + 2 + (E + S)) + S$
 - $\rightarrow (1 + 2 + (3 + S)) + S$
 - $\rightarrow (1 + 2 + (3 + E)) + S$
 - $\rightarrow (1 + 2 + (3 + 4)) + S$
 - $\rightarrow (1 + 2 + (3 + 4)) + E$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$

- **Rightmost derivation:**
 - $S \rightarrow E + S$
 - $\rightarrow E + E$
 - $\rightarrow E + 5$
 - $\rightarrow (S) + 5$
 - $\rightarrow (E + S) + 5$
 - $\rightarrow (E + E + S) + 5$
 - $\rightarrow (E + E + E) + 5$
 - $\rightarrow (E + E + (S)) + 5$
 - $\rightarrow (E + E + (E + S)) + 5$
 - $\rightarrow (E + E + (E + E)) + 5$
 - $\rightarrow (E + E + (E + 4)) + 5$
 - $\rightarrow (E + E + (3 + 4)) + 5$
 - $\rightarrow (E + 2 + (3 + 4)) + 5$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$

$S \rightarrow E + S \mid E$

$E \rightarrow \text{number} \mid (S)$
Loops and Termination

• Some care is needed when defining CFGs
• Consider:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow S
\end{align*}
\]

– This grammar has nonterminal definitions that are “nonproductive”. (i.e. they don’t mention any terminal symbols)
– There is no finite derivation starting from S, so the language is empty.

• Consider:

\[
S \rightarrow (S)
\]

– This grammar is productive, but again there is no finite derivation starting from S, so the language is empty

• Easily generalize these examples to a “chain” of many nonterminals, which can be harder to find in a large grammar

• Upshot: be aware of “vacuously empty” CFG grammars.
 – Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.
Associativity, ambiguity, and precedence.

GRAMMARS FOR PROGRAMMING LANGUAGES
Consider the input: $1 + 2 + 3$

Leftmost derivation:

1. $S \rightarrow E + S$
2. $S \rightarrow 1 + S$
3. $S \rightarrow 1 + E + S$
4. $S \rightarrow 1 + 2 + S$
5. $S \rightarrow 1 + 2 + E$
6. $S \rightarrow 1 + 2 + 3$

Rightmost derivation:

1. $S \rightarrow E + S$
2. $S \rightarrow E + E + S$
3. $S \rightarrow E + E + E$
4. $S \rightarrow E + E + 3$
5. $S \rightarrow E + 2 + 3$
6. $S \rightarrow 1 + 2 + 3$

Parse Tree:

```
S
 /  \
E + S
 /    \
1     S
 |     / \
|     E + S
|     /    \
|     2     S
|     /      \
|     2       E
|     /        \
|     3        \\
```

AST

```
S
 /  \
E + S
 /    \
1     S
 |     / \
|     E + S
|     /    \
|     2     S
|     /      \
|     2       E
|     /        \
|     3        \\
```

```
+  
 |
1 + 3
```

```
2
```

```
3
```
Associativity

• This grammar makes ‘+’ right associative…
• The abstract syntax tree is the same for both 1 + 2 + 3 and 1 + (2 + 3)
• Note that the grammar is right recursive…

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

• How would you make ‘+’ left associative?
• What are the trees for “1 + 2 + 3”?
Consider this grammar:

\[
S \rightarrow S + S \mid (S) \mid \text{number}
\]

Claim: it accepts the *same* set of strings as the previous one.

What's the difference?

Consider these *two* leftmost derivations:

1. \[
S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3
\]
2. \[
S \rightarrow S + S \rightarrow S + S + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3
\]

One derivation gives left associativity, the other gives right associativity to `+`.

Which is which?
Why do we care about ambiguity?

• The ‘+’ operation is associative, so it doesn’t matter which tree we pick. Mathematically, \(x + (y + z) = (x + y) + z \)
 – But, some operations aren’t associative. Examples?
 – Some operations are only left (or right) associative. Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their precedence

• Consider:

\[
S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
\]

• Input: 1 + 2 * 3
 – One parse = \((1 + 2) * 3 = 9\)
 – The other = \(1 + (2 * 3) = 7\)
Eliminating Ambiguity

• We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right).
• Higher-precedence operators go farther from the start symbol.
• Example:

\[S \rightarrow S + S \mid S \ast S \mid (S) \mid \text{number} \]

• To disambiguate:
 – Decide (following math) to make ‘∗’ higher precedence than ‘+’
 – Make ‘+’ left associative
 – Make ‘∗’ right associative
• Note:
 – \(S_2 \) corresponds to ‘atomic’ expressions

\[\begin{align*}
S_0 &\rightarrow S_0 + S_1 \mid S_1 \\
S_1 &\rightarrow S_2 \ast S_1 \mid S_2 \\
S_2 &\rightarrow \text{number} \mid (S_0)
\end{align*}\]
Context Free Grammars: Summary

• Context-free grammars allow concise specifications of programming languages.
 – An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 – Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.

• Even with an unambiguous CFG, there may be more than one derivation
 – Though all derivations correspond to the same abstract syntax tree.

• Still to come: finding a derivation
 – But first: happy