
Computability

Computability

• Can anyone write a program that takes some other program as input and simply
answer the following yes/no question

• Will the input program ever crash?

• This is a variant on the Halting Problem (Turing)

• This is largely taken from MacCormack(2012) ch 10

Question: Will a program crash?

Proof by Contradiction

• Suppose there exists a program "mayCrash" that will accepts some inputs then and after
processing the inputs it does one of three things:

• output "YES"

• output "NO"

• crash

• Suppose there exists a program "canCrash" that takes as input a program (like mayCrash) and a
set of inputs for the input program and outputs

• YES if the program could crash

• NO otherwise

Combine these conditions

CanCrashMod

• CanCrashMod is identical to canCrash BUT

• outputs

• rather that saying yes, it crashes

• NO otherwise

SelfCanCrashMod

• Modify CanCrashMod to SelfCanCrashMod

• crashes when given itself and inputs that would cause CanCrashMod to crash

• No otherwise

• Side note: Even this is pretty much impossible. You need a program that is
capable of running itself in simulation. Which means that you need the program
to have as a part of itself a simulator that can run itself.

• Can you write a compiler that compiles itself?

AntiSelfCanCrashMod

• The negative of SelfCanCrashMod

• if input would cause a crash when run on itself, return YES

• crash

CanCrash

Outputs:
YES
No

CanCrashMod

Outputs:
CRASH
No

SelfCanCrashMod

Outputs:
CRASH
No

AntiSelfCanCrashMod

Outputs:
Yes
CRASH

Contradiction

• The YES statement of AntiCanCrashSelfMod contradictory!!!

• program cannot output YES if it has crashed.

• Therefore such a program cannot exist

• QED

Danger, Will Robinson
https://www.google.com/search?client=firefox-b-1-d&q=danger+will+robinson#fpstate=ive&vld=cid:06d64c16,vid:OWwOJlOI1nU,st:0

https://www.google.com/search?client=firefox-b-1-d&q=danger+will+robinson#fpstate=ive&vld=cid:06d64c16,vid:OWwOJlOI1nU,st:0

Optimizing IR

Distance over many words
• Problem: Find the minimum separation in a document of an unbounded number of words

(over a set of documents)

• Two pairwise algorithms

• O(n*m*D)

• O((n+m)*D)

• Can we use either of these algorithms directly for 3, 4, 5, 6, ... words?

• if NOT, why?

• What can we do?

for D in documents
for l1 in (w1 in D)
for l2 in (w2 in D)

for D in documents
While idx1<len1 and idx2<len2
...

Recursion to the rescue!

• I -- inverted index

• W -- list of words

• wi -- index of the word
to work on now

• d -- document id

• lower -- lower bound

• upper -- upper bound

func closest(I,W,wi,d,lower,upper)
 if len(W) <= wi
 return upper-lower
 wl = locations of W[wi] in d extracted from I
 best = length of d (in words)
 for wwll in wl
 let tl=lower
 let tu=upper
 if wwll < tl or tl < 0
 tl=wwll
 if wwll > tu
 tu=wwll
 let q = closest(I, W, wi+1, d, tl, tu)
 if q < best
 best = q
 return best

Walk through the algorithm
• Suppose 3 words

• location of words in
document are

• w0 = [5,100,500]

• w1 = [200, 1000, 2000]

• w2 = [101, 400, 1500]

dID=0, lower=-1,
upper=-1

dID=1, lower=500,
upper=500

dID=1, lower=100,
upper=100

dID=1, lower=5,
upper=5

dID=2, lower=5,
upper=2000

dID=2, lower=5,
upper=1000

dID=2, lower=5,
upper=200

dID=2, lower=5,
upper=1500

dID=2, lower=5,
upper=400

dID=3, lower=5,
upper=200

return 195 return 1495return 395

return 195 return 995
return 1995

return 195
return 100

return 399

Data
• emma elizabeth and but

• 437 ms

• rob rich the and

• 233 sec

• to be or not

• 119 minutes (on lab computer)

• Works!!

• BUT it really slows down on common words

• Why

• What can we do?

• Analyse!

• Order Matters!

• tentative conclusion: start smallest, then largest, to
smallest

rob rich the and 250 emma eliz and but 239ms
the and rob rich 285 emma and but eliz 366
the rob rich and 258 and but emma eliz 276
rich the and rob 179 eliz and but emma 66

Looking at the Algorithm
• Suppose 3 words

• location of words in
document are

• w0 = [5,100,500]

• w1 = [200, 1000, 2000]

• w2 = [101, 400, 1500]

dID=0, lower=-1,
upper=-1

dID=1, lower=500,
upper=500

dID=1, lower=100,
upper=100

dID=1, lower=5,
upper=5

dID=2, lower=5,
upper=2000

dID=2, lower=5,
upper=1000

dID=2, lower=5,
upper=200

dID=2, lower=5,
upper=1500

dID=2, lower=5,
upper=400

dID=3, lower=5,
upper=200

return 195 return 1495return 395

return 195 return 995
return 1995

return 195
return 100

return 399

The only thing that can happen
with lower and upper is get

farther apart

195 is the best so far
This one cannot be less than

995, so do not recur

Reminiscent of
alpha,beta pruning

in game play

Data V2
• emma elizabeth and but

• 18ms

• @30x

• rob rich the and

• 958 ms

• @200x

• to be or not

• 9.6 sec

• Works!!
• Speedup of 1--400+

speedup depends on how much can be pruned

No change to worst case complexity

Wisdom is to reorder words in query

rarest first

most common next

Can we do better?

Where is the time going?

Lots of instrumentation later

the transformation of [{document, location}..]

into [location...]

In particular, at the lowest level of the recursion, my code

does this A LOT

each time it does this, it throws the result away!

Further improve v2?

• Where is the time going?

• Lots of instrumentation later

• Lots of time is going into

• the transformation of [{document, location}..]

• into [location...] for a single document

• and then garbage collecting

• Why?

• Being done at every level of recursion

• lowest level of the recursion does this A LOT

• each time it does this, it throws the result away!

• Meta question: Do we really even need this transformation?

V3

• docLocs -- a 2-d array
holding the locations in
documents of the exact
words

• W -- list of words

• wi -- index of the word to
work on now

• d -- document id

• lower -- lower bound

• upper -- upper bound

func closest(docLocs,W,wi,d,lower,upper)
 if len(W) <= wi
 return upper-lower
 wl = docLocs[wi]
 best = length of d (in words)
 for wwll in wl
 let tl=lower
 let tu=upper
 if wwll < tl or tl < 0
 tl=wwll
 if wwll > tu
 tu=wwll
 let q = closest(I, W, wi+1, d, tl, tu)
 if q < best
 best = q
 return best

do the [{docId loc} ...] to [loc,...] transition exactly once!

Data V3
• emma elizabeth and but

• 1.3ms

• @10x over v2

• rob rich the and

• 63 ms

• @15x over v2

• to be or not

• 178ms

• @100x over v2

• Works!!

• Speedup of 30-200+

Can we do better?

Where is the time going?

Lots of instrumentation later

the transformation of [{document, location}..]

into [location...]

In particular, at the lowest level of the recursion, my code

does this A LOT

each time it does this, it throws the result away!

