
Doing Science

Applying scientific thinking to improving mergesort

To write like a scientist, you first have to think like one

Thinking like a Scientist

A rancher hired an engineer, a
scientist and a mathematician to

build a fence

The 9s of uptime
Number of 9s % uptime downtime in a year

1 90% 36 days

2 99% 3.6 days
86 hours

3 99.9 8.6 hours
500 minutes

4 99.99 50 minutes

5 99.999 5 minutes
300 seconds

6 99.9999 30 seconds

7 99.99999 3 seconds

Phone system with 6 Nines of uptime
• 2 computers: 1 live and one spare

• must be several miles apart

• idea: replicate memory from live to spare

• if time between replications is N seconds, then need to be able to:

• A. identify all RAM that has changed in the past second

• B. transmit those changes

• C. update the "spare"

• time for A+B < N seconds

• time for C less than N seconds

• If A+B+C < 3 seconds than can get

• 7 Nines -- assuming only one transition per year

• 6 Nines -- assuming 10 transitions!

• and we can do it on commodity hardware

The Engineering Approach

• I was working with a bunch of engineers

• they spec'd the problem,

• determined max speed of transmission between two computers 5 miles apart

• start at M seconds: Ask: does it work? Is is good enough?

• repeat until either "does it work" is NO or "good enough" is YES

• Conclusion: at 200 (ish) ms it still worked and was deemed "good enough"

• At that rate 7 Nines seems achievable!!!

The Science Approach

• I asked "What is the shortest replication interval achievable and why"

• How do I ask this question???

• What do I know?

• What data can I get?

• ie what is knowable?

What is the shortest replication interval achievable and why

• Known: transmission rate: Mbits/second

• Can ask: given a time start how much memory has changed between

• So in 2 ms intervals over the corse of several days on a phone server

• On average how much has changed:

• in 2ms

• in 4ms

• in 8ms

• ...

Think like a scientist about
Mergesort

Hypothesis: I can speed up
Mergesort

Question: Where is the time
used in MergeSort?

MergeSort(list)
 if length(list)<=1 return list
 return merge(MergeSort(half1),
 MergeSort(half2))

merge(l1, l2)
 let nArray = new [l1.len+l2.len]
 merge l1 and l2 in nArray
 return nArray

Assume getting half takes
0 time

3 pieces of the algorithm require time

about 1600ms

about 5000 ms

about 100ms

func domerge(list1, list2 []int) []int {
 rtn:=make([]int, len(list1)+len(list2))
 merge into rtn
 return rtn;
}

func doMergeSort(list []int) []int {
 if len(list) <= 1 {
 return list
 }
 if len(list) < cutoff {
 iSort(list, 0, len(list)-1)
 return list
 }
 mid := len(list)/2
 return domerge(doMergeSort(list[:mid]), doMergeSort(list[mid:]));
}

Merge Sort With Insertion
Sort on small chunks

Here is the insertion sort.
This is the only change

from standard mergeSort

MergeSort is not "in place"
So you need to return the

sorted array.

func mmerge(source, target []int, start, gap int) {
 // merge happens here
 }

func mimergeSort(list []int, left, right int) []int {
 if cutoff>1 {
 for a:=0; a<len(list); a+=cutoff {
 b:=a+cutoff-1
 if b>=len(list) {
 b=len(list)-1
 }
 iSort(list, a, b)
 }
 }
 z:=cutoff
 if z<1 { z=1 }
 A := list
 B := make([]int, len(list))
 for ;z<len(list); z=z*2 {
 for aa:=0; aa<len(A); aa+=z*2 {
 mmerge(A, B, aa, z)
 }
 A,B = B,A // swap
 }
 return A
}

Merge Sort With a
backup array

Here is the insertion sort. Since we
have a single array, we use insertion
sort of each group of size "cutoff" so

each little group is sorted

Make the backup array. Do that once

Because we are going to use a backup
array, we can do merge sort without

all of that annoying recursion and
splitting.

Merge merges from source array into target array

No splitting, just merging

When sorting random integers
(in my Go implementation)

Rank by speed:
Dual pivot (cut=50)
Quicksort (cut=50)
Mergesort (cut=40)

Why is mergesort slower?

about 1600ms

about 5000 ms

about 100ms

Partition is faster than merge

MergeSort
merge

Quicksort
partition

func mmerge(source, target []int, start, gap int) {
 locr:=start
 loc1:=start
 end1:=start+gap

 loc2:=start+gap
 end2:=start+2*gap
 if end2>=len(target) {
 end2=len(target)
 }

 for ;loc1<end1 && loc2<end2; {
 if source[loc1]>source[loc2] {
 target[locr]=source[loc2];
 loc2++
 } else {
 target[locr]=source[loc1];
 loc1++
 }
 locr++
 }
 for i:=loc1; i<end1; i++ {
 target[locr]=source[i];
 locr++
 }
 for i:=loc2; i<end2; i++ {
 target[locr]=source[i];
 locr++;
 }
}

 m:=left
 for i:=left+1; i<=right; i++ {
 if (A[i] < A[left]) {
 m++
 A[i],A[m] = A[m],A[i] //swap
 }
 }

