Doing Science

To write like a scientist, you first have to think like one

Applying scientific thinking to improving mergesort

Thinking like a Scientist

A rancher hired an engineer, a
scientist and a mathematician to
build a fence.....

The 9s of uptime

Number of 9s % uptime downtime in a year
1 90% 36 days
o 099, 3.6 days
86 hours
3 99.9 8.6 hpurs
500 minutes
4 99.99 50 minutes
5 99.999 5 minutes
300 seconds
6 99.9999 30 seconds
7 99.99999 3 seconds

Phone system with 6 Nines of uptime

* 2 computers: 1 live and one spare

* must be several miles apart
* idea: replicate memory from live to spare
* if time between replications is N seconds, then need to be able to:
* A.identify all RAM that has changed in the past second
* B. transmit those changes
* C.update the "spare"
* time for A+B < N seconds
* time for C less than N seconds
* If A+B+C < 3 seconds than can get
* 7 Nines -- assuming only one transition per year
* 6 Nines -- assuming 10 transitions!

* and we can do it on commodity hardware

The Engineering Approach

| was working with a bunch of engineers
* they spec'd the problem,
» determined max speed of transmission between two computers § miles apart
* start at M seconds: Ask: does it work? Is is good enough?
* repeat until either "does it work" is NO or "good enough” is YES
* Conclusion: at 200 (ish) ms it still worked and was deemed "good enough”

» At that rate 7 Nines seems achievable!!!

The Science Approach

| asked "What is the shortest replication interval achievable and why”

* How do I ask this question???

* What do | know?
* What data can I get?

* ie what is knowable?

What s the shortest replication interval achievable and why

* Known: transmission rate: Mbits/second
* Can ask: given a time start how much memory has changed between
* Soin 2 ms intervals over the corse of several days on a phone server
* On average how much has changed:
°* In2ms
* In 4mMs

* in 8Ms

Think like a scientist about
Mergesort

Hypothesis: I can speed up
Mergesort

time in milliseconds

7000

6000

5000

4000

3000

2000

1000

Comparing I*lgn sorts

e AOR
9/.\
Merge Sort o w

/ FIL)U al Pivot cut=50
/’/ =

| | | |

10 20 30 40
size of sorted list (millions)

Relative Speed

1.5

0.5

Speed relative to Dual Pivot Quicksort with cutoff=50

dual pivot cut=50 Quick cut=50 Quick cut=1 Merge Sort
Algorthm

Question: Where is the time
used in MergeSort?

Assume getting half takes

O time

MergeSort(list)
if length(list)<=1 return list
return merge(MergeSort(halfl)
MergeSort(half2)5

mer%e(ll, 12)

et nArray = new [l1.len+12.1len]
merge L1 and L2 1in nArray
return nArray

3 pieces of the algorithm require time

time in milliseconds

7000

6000

5000

4000

3000

2000

1000

Source of time usage Iin MergeSort

about 5000 ms

Base Merge Sort

e - g—"
ake Spe [-
 merge XUS\ maX 43———“——__8_
‘ -
DO NO [= e
B about 1600ms
= o
PR o Do not merge, or make space
T = s ~ i X g ¥~ about 100ms
10 20 30 40 50

size of sorted list (millions)

time In nanoseconds for 10 runs

1.6x107C
1.4x1070
1.2x1070
1x1010
8x10?
6x10°

4x10°

2x107

p—

Time by recursion level

10 ru?f sorting 100,000,000 items

Recursion level

X Quicksort
t xx Mergesort % + T+
KAR + +
i KX KKK K XK K XKARX el $
+ +
+
4+ T
BN N S SRR +
- +
Ty
+
+
| 1 | I ++++++++++++++++
0 10 20 30 40 50 60

Merge Sort With Insertion
Sort on small chunks

func domerge(listl, list2 [lint) []int

merge into rtn
return rtn;

func doMergeSort(list [lint) []int {
if len(list) <= 1 {
return list
I3
if len(list) < cutoff {
iSort(list, 0, len(list)-1)
return list
I3
mid := len(list)/2
return domerge(doMergeSort(list[:mid]), doMergeSort(list[mid:]));

}

time in milliseconds

3300
3200
3100
3000
2900
2800
2700
2600
2500
2400
2300
2200

The effect of cutoff on mergesort

Unix —- comet

Unix —- DB

100

150

200

250
cutoff

300

3950

400

450

o500

Merge Sort With a

func mmerge(source, target [lint, start, gap int) {

baCkup array // merge happens here

}

func mimergeSort(list [lint, left, right int) []int {
if cutoff>1 {
for a:=0; a<len(list); a+=cutoff {
b:=a+cutoff-1
if b>=len(list) {
b=len(list)-1

¥
iSort(1list, a, b)
+
¥
Z:=cutoff
if z<1 { z=1 }
A := list

for 3z<len(list); z=zx2 {

for aa:=0; aa<len(A); aa+=z%2 {
mmerge(A, B, aa, z)
= B,A // swap
return A

time in milliseconds

7000

6000

5000

4000

3000

2000

1000

Comparing merge sort optimization ideas

MergeSort with backup array and insertion sort cut=40

20 30
size of sorted list (millions)

40

time in milliseconds

Comparing optimized I*lgn sorts
5000 -

4500
4000

3500 f
3000 MergeSort with backup array cut=40

2500 | e

2000 F

--".‘+.------

1500 jfffc Dual Pivot cut=50

1000 | T

o500

0 I I I I |
0 10 20 30 40 o0

size of sorted list (millions)

Relative Speed

1.5

0.5

Speed relative to Dual Pivot Quicksort with cutoff=50

1.34
1.13
| I

1.78
I 1027

dual Quick Quick
cut=50 cut=50

Merge Sort Merge Sort
lter, cut=40

When sorting random integers

implementation)

Rank by speed:
Dual pivot (cut=50)
Quicksort (cut=50)
Mergesort (cut=40)
Why is mergesort slower?

time in milliseconds

7000

6000

5000

4000

3000

2000

1000

Source of time usage Iin MergeSort

about 5000 ms

Base Merge Sort

e - g—"
ake Spe [-
 merge XUS\ maX 43———“——__8_
‘ -
DO NO [= e
B about 1600ms
= o
PR o Do not merge, or make space
T = s ~ i X g ¥~ about 100ms
10 20 30 40 50

size of sorted list (millions)

Partition is faster than merge

Quicksort
partition

- —h —h
o o

e(source, target []int, start, gap int) {
start

start

start+gap

tart+gap

tart+2xgap

>=len(target) {

2=1len(target)

for ;locl<endl && loc2<end2; A
if source[locl]l>source[loc2] {
target[locr]l=source[loc2];
loc2++
} else {
target[locr]l=source[locl];
locl++

}

locr++

m:=left
for i:=left+1l; i<=right; i++ {
if (A[i] < A[left]) {
m++
A[l] ;A[m] — A[m] ;A[l]

//swap

