CMSC 337
 Algorithms: Design \& Practice

Graphs: Do/Don't

- Simple
- Lies
- Labels
- Appropriate type

Graphs: Do/Don't

- Simple
- Lies
- Labels
- Appropriate type

Graphs: Do/Don't

- Simple
- Lies
- Labels
- Appropriate type
- Beautiful

Graphs: Do/Don't

- Simple
- Lies
- Labels
- Appropriate type

Favorite Class

Programming Language

Programming Language

Algorithms

A Bird's Eye View

Information Processing

Problem Solving (Investigation of Processes)

- Given a dictionary of english words, what are all the anagram classes? (e.g. earthling, haltering, lathering)
- Given the details of a tropical depression, can you predict if it will become a hurricane? What path will it take?
- Can you play the game of chess in a way that guarantees a win or a draw?
- How does the mind work?
- What is the most optimal way to get from here to there?
- What is the square root of 42 ?
- What impact will the Fed raising short term interest rates have on international currencies?
- What is the meaning of life?

Investigation: Asking Questions

Given: A problem/process.

- Does it have a model?
- Is the model solvable?
- Is it computable?
- What is the best algorithm for it?
- Write a computer program that implements the algorithm.
- Is the program equivalent to the model?
- Does the model lend any new insights into the problem/process?

Given: A Problem

Information Processing

Information Processing

Given: A Problem

Computability:

Problems that can be solved by algorithms (Turing Machines)

Complexity Theory:
 Computational Resources required (time \& space)

What is an algorithm?

A set of instructions arranged in a specific order is a procedure.
Similar to a recipe, process, method, technique, procedure, routine, rigmarole, except the word "algorithm" connotes just a little something different.
An algorithm is a finite, definite, effective procedure, with some output.

Donald Knuth: The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd edition, 1997.

Algorithm (properties)

Finite

There must be an end to it within a reasonable time
Definite
Precisely definable in clearly understood terms, no "pinch of salt" type vagaries, or possible ambiguities

Effective

It must be possible to actually carry out the steps

Procedure

The sequence of specific steps

Output

Unless there is something coming out of the computation, the result will be unknown!

Problem Size

- Time complexity of a problem is the number of steps that it takes to solve an instance of the problem as a function of the size of the input. i.e. if the input is of size, n, it will take $f(n)$ steps to solve it.

How long to sort 10 million numbers?

Computer A
Speed: 10^{10} instructions/sec Running $\mathrm{O}\left(n^{2}\right)$ sort Requires $2 n^{2}$ instructions

How long will it take?

Computer B

Speed: 10^{7} instructions/sec Running $\mathrm{O}(n \log n)$ sort Requires $50 n \log n$ instructions

How long will it take?

How long to sort 10 million numbers?

Computer A
Speed: 10^{10} instructions/sec Running $\mathrm{O}\left(n^{2}\right)$ sort
Requires $2 n^{2}$ instructions

$$
\frac{2 *\left(10^{7}\right)^{2}}{10^{10}} \approx 20,000 \mathrm{~s}
$$

~ 5.5 hours

Computer B

Speed: 10^{7} instructions/sec Running $\mathrm{O}(n \log n)$ sort Requires $50 n \log n$ instructions

How long will it take?

How long to sort 10 million numbers?

Computer A
Speed: 10^{10} instructions/sec Running $\mathrm{O}\left(n^{2}\right)$ sort Requires $2 n^{2}$ instructions

$$
\frac{2 *\left(10^{7}\right)^{2}}{10^{10}} \approx 20,000 \mathrm{~s}
$$

~ 5.5 hours

Computer B

Speed: 10^{7} instructions/sec Running $\mathrm{O}(n \log n)$ sort Requires $50 n \log n$ instructions

$$
\frac{50 * 10^{7} * \log 10^{7}}{10^{7}} \approx 1163 \mathrm{~s}
$$

under 20 minutes!

How long to sort 10 million numbers?

Computer A
Speed: 10^{10} instructions/sec
Running $\mathrm{O}\left(n^{2}\right)$ sort
Requires $2 n^{2}$ instructions

$$
\frac{2 *\left(10^{7}\right)^{2}}{10^{10}} \approx 20,000 \mathrm{~s}
$$

If running $50 n \log n$ program: < 2 s !!

Computer B

Speed: 10^{7} instructions/sec Running $\mathrm{O}(n \log n)$ sort Requires $50 n \log n$ instructions

$$
\frac{50 * 10^{7} * \log 10^{7}}{10^{7}} \approx 1163 \mathrm{~s}
$$

under 20 minutes!

$P=N P ?$

from wikipedia

Complexity

NP-Complete

- NP = Non-determinitic Polynoimial
- in NP == Solution is verifiable in P time
- problem is provably equivalent to other NP complete problems
- vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge.

Vertex Cover Algorithm

- Find the minimum vertex cover of a graph
- We will discuss graph representations, just make something up for now

Vertex Cover Algorithm

- Optimal algorithm
- Naive algorithm
- Greedy Algorithm

xkcd??

- More on xkcd.com

Algorithm for Algorithm Development

def algorithmDevelopment(problemSpec):
correct $=$ false
while not correct or not fastEnough(runningTime):
algorithm = deviseAlgorithm(problemSpec)
correct = analyzeCorrectness(algorithm)
runningTime $=$ analyzeEfficiency(algorithm)
return algorithm

Algorithm for Program Development

def programDevelopment(algorithm, testSuite):
language $=$ pickLanguage(algorithm)
program = code(algorithm, program)
do:
check = false
while not check:
program = debug(program)
check = verifyProgram(program, testSuite)
performance $=$ measure(performance)
while not acceptable(performance)

An algorithm to consider

- Given two lists of integers
- call these A and B
- Find: min(abs(A[i]-B[j])

