
CMSC337:	Algorithms:	Design	&	Practice


Lab#1:	Language	Standards,	Reference,	Reference	Compilers,	and	finding	odd	numbers


For	two	of	your	preferred	programming	languages,	identify	the	following:


1. What	is	the	current	version	of	the	language?


C:__________	 	 Go:__________		 Java:__________	 Python:__________


2. For	your	preferred	two	languages,	what	is	the	authoritative	language	reference	(printed,	or	online):


C:


Go:


Java:


Python:


3. For	your	preferred	two	languages,	what	compiler(s)	are	available	on	CS	machines?


C:__________	 	 Go:__________		 Java:__________	 Python:__________


For	your	two	preferred	languages,	what	IDE(s),	if	any,	are	available	on	CS	machines?


C:__________	 	 Go:__________		 Java:__________	 Python:__________


4. Consider	the	function	defined	below:





5. You	can	use	the	modulo	operator	(%)	to	test	if	a	number	is	odd.	That	is,	n	is	an	odd	number	 
if		(n	%	2)	equals	1.	Thus,	the	function	isOdd(n)	can	be	defined	using	the	algorithm	shown	below:


function	isOdd(n:	integer)	returns	true/false 
						if	(n	%	2)	equals	1 
												return	true 
						else 
												return	false


isOdd(n) =  { true i f n is odd
false o /w


1



6. Next,	code	the	function	isOdd()	using	the	algorithm	described	in	(5)	in	at	least	two	programming	
languages	using	the	latest	versions	identified	in	(1)	that	can	be	compiled	using	the	compilers	
identified	in	(3)	above	.	The	function	should	return	a	boolean	value.	Only	in	case	a	boolean	type	is	
not	available	in	a	language,	you	may	use	an	integer	result	where	1	stands	for	true	and	0	for	false. 

7. Write	a	program	that	uses	isOdd()	defined	above,	using	the	algorithm	shown	below: 
 
for	each	value,	say	i	in	0..5 
						print	out	the	value	returned	by	the	expression	isOdd(i) 
 
Format	the	output	so	it	looks	as	follows: 
0	false 
1	true 
2	false 
3	true 
4	false 
5	true 
Note,	and	confirm,	that	the	program	is	correctly	identifying	1,	3,	and	5	as	odd	numbers	(i.e.	prints	
true),	and	that	0,	2,	and	4	are	correctly	identified	as	not	being	even	numbers	(i.e.,	prints	false).	
Ensure	that	you	have	tested	all	two	of	your	programs	in	this	manner. 

8. Next,	modify	the	programs	to	use	the	following	algorithm: 
 
for	each	value,	say	v	in	-5..5 
						print	out	the	value	returned	by	the	expression	isOdd(v)


 
Run	all	programs	and	note	down	your	results.	You	will	have	a	total	of	2x11	cases.	Two	programming	
languages,	each	program	producing	11	outputs. 

9. Study	the	22	cases	closely	and	ensure	that	all	outputs	are	correct.	Guess	what,	they	will	not	be!	For	
the	language	whose	program	gave	incorrect	results,	study	the	language	reference(s)	identified	in	(2)	
above	to	investigate	the	cause. 

10. Based	on	your	analysis,	revise	the	algorithm	from	step	5	so	it	produces	correct	results.	Then	revise	
your	programs	to	reflect	your	revised	algorithm.


11. Test,	using	the	algorithm	from	(8)	again.	Confirm	that	the	results	are	correct! 


2



12. [Extra	Credit]	Study	if	any	or	all	the	programming	languages	provide	bitwise	operations.	You	can	use	
the	bitwise	AND	operation	for	an	alternate,	and	faster,	implementation	of	isOdd()	as	below: 
 
function	isOdd(n:	integer)	returns	true/false 
						return	(n	BITWISE_AND	1)	!=	0 
 
Test	all	your	programs	again	using	the	algorithm	in	(8)	to	confirm	that	you	have	a	correct	
implementation. 

13. Write	a	short	essay	based	on	this	little	computational	excursion.	The	target	audience	of	your	essay	
should	be	seasoned	computer	science	students	(like	yourselves).	You	essay	should	serve	as	an	
informative	tutorial	that	succinctly,	and	in	an	engaging	manner,	teaches	the	reader	about	the	
importance	of	language	standards,	compilers,	pitfalls,	traps,	and	safe	coding	techniques. 
 
Note:	You	do	not	need	to	include	all	the	details	from	this	lab,	only	the	most	relevant	ones.	The	essay	
should	be	no	longer	than	2-3	printed	pages	(single-line	spacing,	1-inch	margins	all	around). 
 
What	to	submit:


a. Your	essay.


b. Associated	with	your	essay	should	be	two	appendices:


i. An	Appendix	showing	your	answers	to	(1)	through	(3)	above.


ii. An	Appendix	with	the		showing	all	of	your	code	(there	should	be	4	programs,	more	if	
you	did	the	extra	credit). 
 


3


