
CS 337: Algorithms: Design & Practice
Lab#7: Dijkstra’s Shortest Path Algorithm

In this lab we will implement Dijkstra’s Shortest Path Algorithm (Cormen, Chapter 6). Here
is a synopsis of Dijkstra’s algorithm from your text:

Given: A graph G = <V, E> where V is a set of n vertices and E is an ordered pair of edges
of the form such that X, Y are vertices in V and is the weight on the
edge <X, Y> and . Assume vertices are numbered 0..n-1. The data files, described
below, all have graphs of this form.

< X, Y, Wxy > Wxy
Wxy ≥ 0

Procedure DIJKSTRA(G, s)

Inputs: G as described above,
 s a starting vertex.

Results: For each non-source vertex v in V, shortest[v] is
the weight of the shortest path from s to v and pred[v] is
the vertex preceding v on some shortest path.

Let:

 shortest[v]: an array of length n, with one entry for
each vertex.
 pred[v]: an array of length n. pred[v] contains the
vertex that is the predecessor of v on the shortest path
from s to v.
 Q: A min priority queue of nodes. The key is shortest

for each vertex v in V:
 shortest[v] = ∞
 pred[v] = null

shortest[s] = 0, pred[s] = null

for each vertex v in V:
 insert v in Q

while Q is not empty:
 u = remove from Q the vertex with smallest value of
shortest

 for each vertex v adjacent to u:
 RELAX(u, v)

 1

Where RELAX() is defined below:

If infinity or null is inconvenient in your implementation, feel free to use -1. Doing so
requires an some extra “if” statements but is otherwise equivalent.

Data
Three data files are provided:

 tinyEWD.txt

 mediumEWD.txt

 hugeEWD.txt

These data files are available on UNIX in the directory

 /home/gtowell/Public/CS337/Lab08Data.

In addition, for ease of scp there is a compressed tar file at

 /home/gtowell/Public/CS337/lab08data.tgz

The data files are in the following format:
8	
15	
4	5	0.35	
5	4	0.35	
4	7	0.37	
5	7	0.28	
7	5	0.28	
…plus	10	more	lines…	

The first line of input file contains the number of vertices (8). The second line contains the
number of edges (15). These are followed by edges, one per line. Each field is separated by
one or more spaces. Thus, the first edge listed in the data file above is an edge <4, 5, 0.35>.
That is, a directed edge from vertex 4 to vertex 5 with a weight of 0.35. Vertices are
numbered 0..n-1. Aside: I strongly encourage you to do all of your development and
debugging using “tiny” . This is small enough that you can draw it.

Procedure RELAX(u, v)
Inputs: u, v are vertices in V such that there is an edge
between them
Result: Updates the values in shortest[v] and pred[v] if
possible

if shortest[u]+weight(u, v) < shortest[v]
 shortest[v] = shortest[u]+weight(u, v)
 pred[v] = u
 update Q as needed for the new value of shortest[v]

 2

Task #0:

Implement Dijkstra’s algorithm in the language of your choice using exactly the algorithm
above. Your program should input a graph from a data file of the format described above.
You may use any implementation of PriorityQueue; or write one from scratch. (You need
not follow Cormen.) A poor priority queue implementation will make things slow on
task#2.

Task #1

Write a program to read in a data file of the form described above into a graph ADT. After
reading, the program should enter an interactive loop in which the user is asked for an origin
and destination vertex. The program should, in response, printout the shortest path between
these vertices. The shortest path should be computed using Dijkstra’s algorithm (presumably
using your Task 0 implementation). For instance, the following is a sample interactive
session:

Enter	the	source	vertex:	0	
Enter	the	destination	vertex:	6	
There	is	a	path	from	0	to	6.		
The	shortest	path	has	a	cost	1.51.	Here	it	is:	
	
0	->	2	0.26	
2	->	7	0.34	
7	->	3	0.39	
3	->	6	0.52	
Enter	the	source	vertex:	0	
Enter	the	destination	vertex:	7	
…	

The program should NOT die as a result of user interaction. It should be robust to out of
bounds node numbers (e.g. -1 or 3.1415) and input that is not a number at all (e.g., “This is a
test”). In addition, you program should have a graceful way of exiting (ie tell the user what
to enter to quit).

Here are some more results from a slightly different program incarnation and using the
medium graph (printing the path backwards — as below — is OK).

Source	Vertex:	240	
Destination	Vertex:	23	
There	exists	a	path	from	240	to	23	with	cost	0.451320	
Path	--	backwards	
to	23	from	68		cost		0.074370	
to	68	from	191		cost		0.049820	
to	191	from	231		cost		0.119350	

 3

to	231	from	226		cost		0.076380	
to	226	from	138		cost		0.110640	
to	138	from	240		cost		0.020760	

Source	Vertex:	188	
Destination	Vertex:	4	
The	shortest	path	from	188	to	4	has	cost	0.21	
Path	--	backwards	
to	4	from	240	
to	240	from	188	
Source	Vertex	(-1	to	exit):	4			
Destination	Vertex:	190	
The	shortest	path	from	4	to	190	has	cost	0.45	
Path	--	backwards	
to	190	from	220	
to	220	from	1	
to	1	from	107	
to	107	from	69	
to	69	from	128	
to	128	from	4	
Source	Vertex	(-1	to	exit):	-1	
Goodbye!	

Task#2:

Write a program to determine the following information using the huge graph
 1. The cost of highest cost, shortest path to another node when starting from node
3310. That is, if you travel the most efficient route, what node that is reachable has the
highest cost to get to.
 2. The destination of the highest cost path.
 3. The number of nodes that are reachable from node 3310

For example, asking the same question of the tiny graph, and starting from node 7, I get the
following result

FROM 7: CAN GET TO 8 nodes
 MOST EXPENSIVE to get to is node 0 with a cost of 1.490000

What to hand in

1. A report describing the design of your program. This should describe all data
structures and abstractions that you created. Where needed, use illustrations. Include
in your report a description of your solution for task 2 and the time complexity (big
O) of your task#2 solution.

2. Appendices containing:
a. A printout of your program

 4

b. Output from three sample runs. For tinyEWD.txt, use vertex 0 and 6 as
source and destination. For mediumEWD.txt, show results for 0 to 4, and 0
to 1.

c. The output of your program for task 2 showing the answers you obtained.

 5

Approximate Grading Rubric

Secret identity: 2 dinosaurs

Introduction 10

Dijkstra description 16

Description of all data structures and abstractions. Why? 26

Illustration of data structures, as appropriate 8

Task 2: Answers to questions 6

Task 2: Description of algorithm and algorithmic analysis 14

Appendix

 code (for all tasks) 10

 sample runs to task 1 5

 output from task 2 5

Total 100

 6

