

Hierarchical Agglomerative Clustering

CS 337

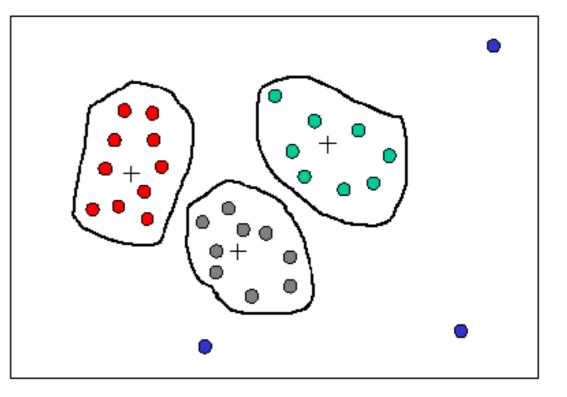
What is Clustering?

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called **clusters**

Helps users understand the natural grouping or structure in a data set

• Cluster:

- a collection of data objects that are "similar" to one another
- and "different" from other clusters

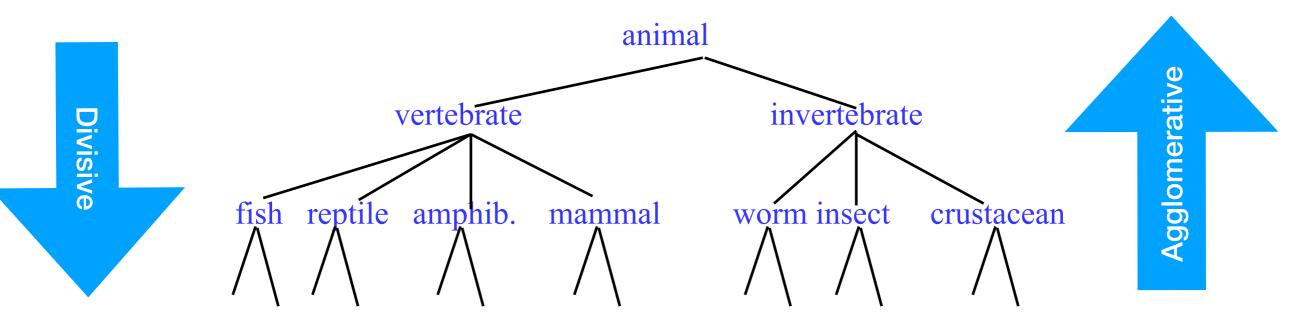


Clustering Methods

- *Agglomerative* (*bottom-up*)
 - iteratively combine clusters to form larger and larger clusters.
- *Divisive* (*partitional, top-down*) separate all examples into clusters. Separate clusters into subclusters.
 - Decision Trees
 - But they require labelled examples
- *K-Means* start with K "centers", assign data to nearest. Compute new centers. Repeat.
 - This week's lab!!!

Hierarchical Clustering

• Builds a tree-based hierarchical taxonomy (*dendrogram*) from a set of examples.



Hierarchical Agglomerative Clustering (HAC)

- Assumes a *similarity function* for determining the similarity of two instances.
- Repeatedly join the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy (dendrogram).

HAC Algorithm

Start with all instances in their own cluster. Until there is only one cluster:

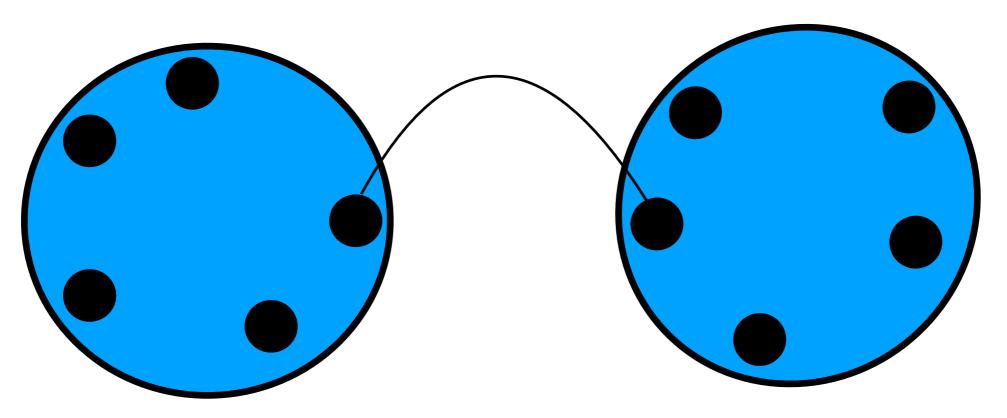
Among the current clusters, determine the two clusters, c_i and c_j , that are most similar. Replace c_i and c_j with a single cluster $c_i \cup c_j$

Cluster Similarity

- Assume a similarity function that determines the similarity of two instances: sim(x,y).
- How to compute similarity of two clusters each possibly containing multiple instances?
 - Single Link: Similarity of two most similar members.
 - Complete Link: Similarity of two least similar members.
 - Centroid: Average similarity between members.
- Monotonically increasing!
 - Desirable but not true of every technique
 - Yes: Single Link, Complete Link
 - No (possibly): Centroid

Single Link Agglomerative Clustering

- Use maximum similarity of pairs: $sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x,y)$
- Can result in "straggly" (long and thin) clusters due to *chaining effect*.

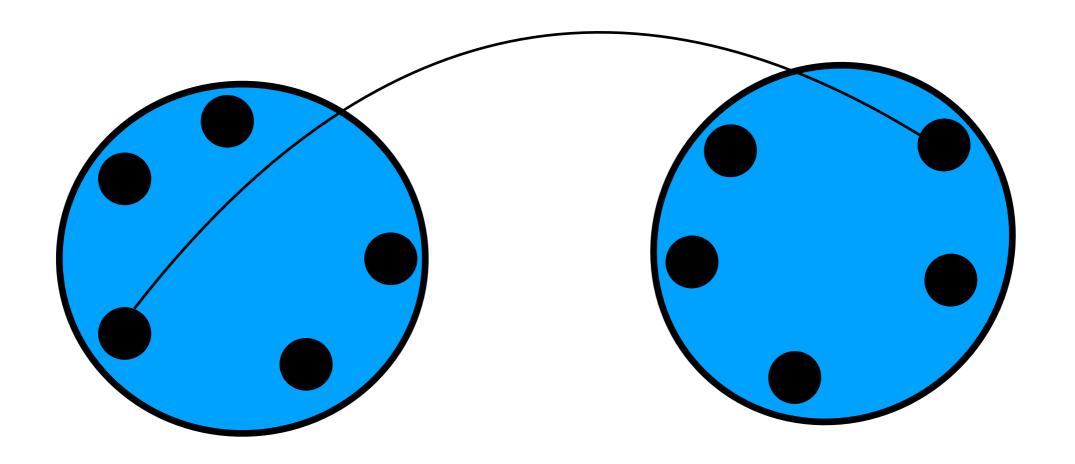


Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$

• Makes more "tight," spherical clusters that are typically preferable.



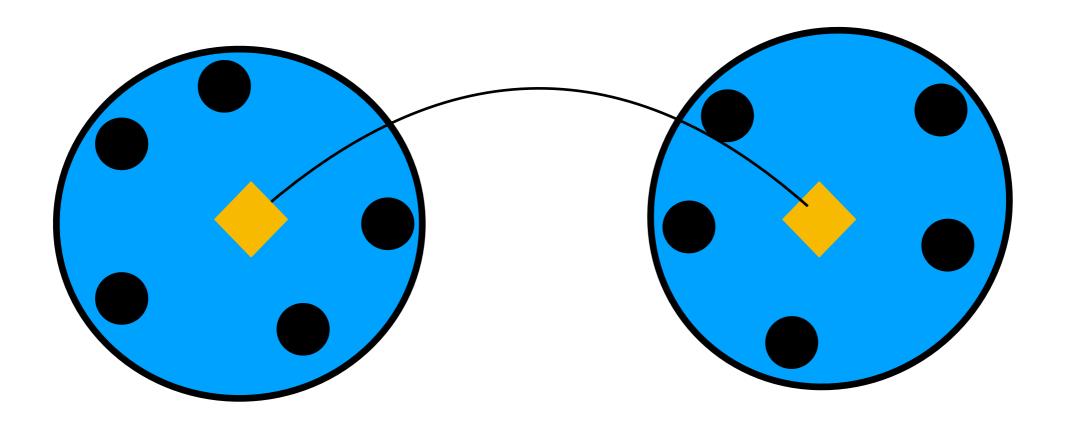
What is a "centroid"

- The average of the points in a cluster.
 - $c_z = (1/N_z) \operatorname{sum}_{i=0..Nz}(d_i)$
 - where c_z is the centroid of cluster Z
 - N_z is number of docs in cluster
 - d_i is a document in cluster Z
 - "sum" does each dimension independently

	Dim1	Dim2	Dim3
Doc1	1	4	7
Doc2	17	20	-5
Doc3	10	10	10
Doc4	2	4	0
Doc5	5	2	3
Cz	7.0	8.0	3.0

Centroid Agglomerative Clustering

- distance to other clusters is the distance between centroids
 - Math: the distance from a document to a cluster centroid is average of distance from that document to each document in the cluster.
 - Every time you change a cluster, you have to recompute distance to every other cluster



Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.
- In each of the subsequent *n*–2 merging iterations, must compute the distance between the most recently created cluster and all other existing clusters.
 - Why n-2?
- Overall $O(n^3)$
 - can get $O(n^2)$ for single link

Stopping HAC

- HAC will continue until there is a single cluster
- Often this does not make sense
 - Cutoff clustering at a specified distance
 - Cutoff clustering when you get a big jump in distance
 - Cutoff when you have a set number of clusters

Distance Dendrograms -- Visualizing HAC

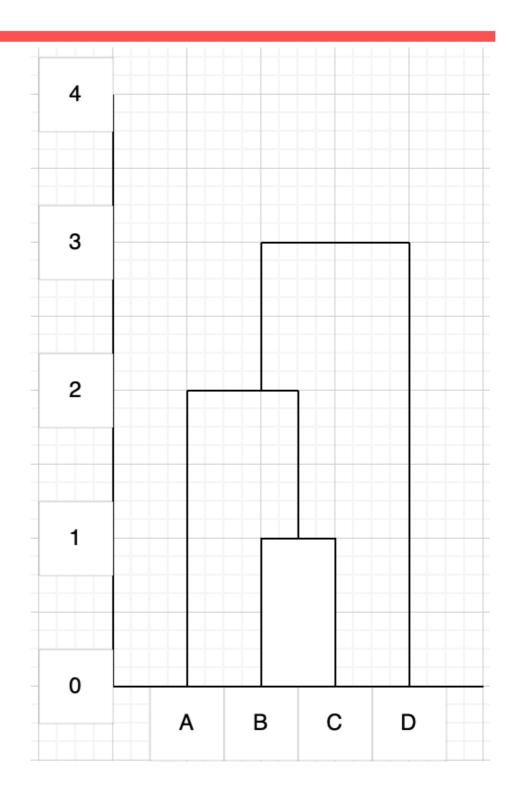
- Create a graph in which y axis is distance between clusters.
- Given monotonically increasing distance get a nice looking graphic
 - Each time you merge a cluster
 - draw two vertical lines from last cluster distance to new cluster distance
 - draw a horizontal line connecting vertical lines at distance between merged clusters
- clusters all start at 0.

Dendrograms --Example

• Suppose 4 items and using single link distance. Distances are in the table

	А	В	С	D
А		2	4	6
В			1	7
С				3

- Step 1: Group together B,C with cost 1
- Step 2: Group A, (B,C) with cost 2
- Step 3: Group D, (A,B,C) with cost 3



Exercise

	a	b	С	d	е	f	g
a	-	-	-	-	-	-	_
b	87	-	-	-	-	-	_
С	92	91	_	-	-	-	_
d	74	22	60	-	-	-	_
е	24	21	28	17	-	—	_
f	6	31	90	17	8	—	_
g	5	3	78	8	56	2	_
h	54	47	15	65	61	80	47

Suppose you have 7 items (a-g) with distances between items in table above.

Show the dendrogram for single link and complete-link clustering for the above data

Clustering Issues

- Suppose you have a feature for which distance is not defined (or at least not well-defined)
- Features on different ranges
- Features with same range but different variance

Normalization

- Ensure features have same mean and variance
- Why?

Similarity Measure

• A similarity measure is a function that computes the *degree of similarity* between two vectors.

- Using a similarity measure between two vectors:
 - It is possible give a total ordering of the distances between a target vector
 - a set of vectors
 - It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled.

Similarity Measure Inner Product

• Similarity between vectors for the document d_i and query q can be computed as the vector inner product (a.k.a. dot product): $sim(d_j,q) = d_j \cdot q = \sum_{i=1}^{t} W_{ij} W_{iq}$

where w_{ij} is the weight of term *i* in document *j* and w_{iq} is the weight of term *i* in the query

- For binary vectors, the inner product is the number of matched query terms in the document (size of intersection).
- For weighted term vectors, it is the sum of the products of the weights of the matched terms.

Properties of Inner Product

- The inner product is unbounded.
- Works best when features are either binary or binary-like
 - 0 indicates absence / false
 - Requires that features are strictly non-negative

Cosine Similarity Measure

- Cosine similarity measures the cosine of the angle between two vectors.
- Inner product normalized by the vector lengths.

$$\operatorname{CosSim}(\mathbf{d}_{j}, \mathbf{q}) =$$

Suppose that VS has only 3 terms (dimensions) A, B, and C, corresponding to t_1 , t_2 and t_3 in graph

 $D_1 = (2, 3, 5)$ $D_2 = (3, 7, 1)$ Q = (0, 0, 2) $\frac{\sum_{i=1}^{i} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{i} w_{ij}^{2}} \cdot \sum_{i=1}^{i} w_{iq}^{2}} \begin{bmatrix} D_{1} & Q \\ \theta_{2} & Q \\ \theta_{2} & 0 \end{bmatrix}} t_{1}$ $\frac{1}{t_{2}} D_{2}$ $CosSim(D_{1}, Q) = \frac{10}{\sqrt{(4+9+25)(0+0+4)}} = 0.81$ $CosSim(D_{2}, Q) = \frac{2}{\sqrt{(9+49+1)(0+0+4)}} = 0.13$

 D_1 is 6 times better than D_2 using cosine similarity but only 5 times better using inner product.

tz

 θ_1

"Norms"

- Properties of norms:
 - Non-negativity: It should always be non-negative.
 - Definiteness: It is zero if and only if the vector is zero, i.e., zero vector.
 - Triangle inequality: The norm of a sum of two vectors is no more than the sum of their norms.
 - Homogeneity: Multiplying a vector by a scalar multiplies the norm of the vector by the absolute value of the scalar.
- Given 2 vectors X and Y
 - Euclidian Norm (2-Norm)
 - sqrt(sum of squares of X_i-Y_i)
 - 1-Norm (Manhattan Distance)
 - Infinity-Norm
 - conceptually similar to complete link
 - P-Norm