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What is Clustering?

Clustering is a process of partitioning a set of data (or objects) in a set
of meaningful sub-classes, called clusters

Helps users understand the natural grouping or structure 1n a data set

® (luster: ®

® a collection of data objects that are
“similar” to one another

e and "different" from other clusters




Clustering Methods

» Agglomerative (bottom-up)

* 1teratively combine clusters to form larger and
larger clusters.

» Divisive (partitional, top-down) separate all examples
into clusters. Separate clusters into subclusters.

* Decision Trees
* But they require labelled examples

» K-Means start with K "centers", assign data to
nearest. Compute new centers. Repeat.

 This week's lab!!!



Hierarchical Clustering

» Builds a tree-based hierarchical taxonomy
(dendrogram) from a set of examples.
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Hierarchical Agglomerative Clustering
(HAC)

* Assumes a similarity function for determining the
similarity of two instances.

» Repeatedly join the two clusters that are most
similar until there 1s only one cluster.

* The history of merging forms a binary tree or
hierarchy (dendrogram).



HAC Algorithm

Start with all instances 1n their own cluster.
Until there 1s only one cluster:
Among the current clusters, determine the two
clusters, ¢;and ¢;, that are most similar.

Replace c;and ¢; with a single cluster ¢; U ¢;



Cluster Stmilarity

* Assume a similarity function that determines the
similarity of two instances: sim(x,y).

* How to compute similarity of two clusters each

possibly containing multiple instances?

— Single Link: Similarity of two most similar members.
— Complete Link: Similarity of two least sitmilar members.
— Centroid: Average similarity between members.

— Monotonically increasing!
— Desirable but not true of every technique
— Yes: Single Link, Complete Link
— No (possibly): Centroid



Single Link Agglomerative Clustering

» Use maximum similarity of pairs:
sim(c;,c;) = max sim(x,y)

X, yec;

* Can result 1n “straggly” (long and thin)
clusters due to chaining effect.




Complete Link Agglomerative Clustering

* Use minimum similarity of pairs:

sim(c;,c;)= min sim(x,y)
XECZ-,yECJ- .
» Makes more “tight,” spherical clusters that are

typically preferable.
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What 1s a "centroid"

» The average of the points 1n a cluster.
* ¢z = (1/Nz) sumi=o.Nz(d;)
* where c; 1S the centroid of cluster Z
* N_1s number of docs 1n cluster
* d; 1s a document 1n cluster Z

* "sum" does each dimension independently
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Centroid Agglomerative Clustering

e distance to other clusters 1s the distance between centroids

 Math: the distance from a document to a cluster
centroid 1s average of distance from that document to
each document in the cluster.

* Every time you change a cluster, you have to recompute
distance to every other cluster
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Computational Complexity

 In the first iteration, all HAC methods need to
compute similarity of all pairs of » individual
instances which 1s O(#n2).

 In each of the subsequent n-2 merging

iterations, must compute the distance between
the most recently created cluster and all other
existing clusters.

* Why n-2?
* Overall On3)
 can get O(n?) for single link
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Stopping HAC

HAC will continue until there 1s a single
cluster

Often this does not make sense
» Cutoff clustering at a specified distance

» Cutoff clustering when you get a big jump
in distance

* Cutoff when you have a set number of
clusters
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Distance Dendrograms -- Visualizing HAC

* Create a graph 1n which y axis 1s distance
between clusters.

* (Given monotonically increasing distance get a
nice looking graphic

* Each time you merge a cluster

e draw two vertical lines from last cluster
distance to new cluster distance

» draw a horizontal line connecting vertical
lines at distance between merged clusters

e clusters all start at O.
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Dendrograms --Example

* Suppose 4 1tems and using single A

link distance. Distances are in the

table

* Step 1: Group together B,C with

cost 1

* Step 2: Group A, (B,C) with cost

2

* Step 3: Group D, (A,B,C) with

cost 3

D
2 4 6
14
3
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Exercise

a b C d e f g
a _ — — — — — -
b 87 = - - - - -
C 02 o1 - - - - -
d 74 22 60 - - = =
e 24 21 28 17 - - -
f 6 31 90 17 8 - -
g 5 3 78 8 56 2 =
h 54 477 15 65 61 80 477

Suppose you have 7 items (a-g) with distances between items in table
above.

Show the dendrogram for single link and complete-link clustering

for the above data
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Clustering Issues

* Suppose you have a feature for which distance
1s not defined (or at least not well-defined)

* Features on different ranges
» Features with same range but different variance
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Normalization

 Ensure features have same mean and variance
* Why?

Algorithm
Given D —— an NxM array where N 1s the number of independent data
items and M 1is the dimensionality of the items
Return —— an NxM array in which the original date has been transforme
to have 0 mean and unit variance
Normalize(D):

let R = an NxM array, initially 0
for m in 0..(M-1):
let av = average of the N items on feature m
let sd = standard deviation of N items on feature m
for n in 0..(N-1):
RIn][m] = (D[n][m]-av)/sd

return R
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Similarity Measure

* A similarity measure is a function that computes the
degree of similarity between two vectors.

e Using a similarity measure between two vectors:
e |t is possible give a total ordering of the distances
between a target vector
e a set of vectors
e |t is possible to enforce a certain threshold so that
the size of the retrieved set can be controlled.



Similarity Measure
Inner Product

e Similarity between vectors for the document d; and
query g can be computed as the vector inner product
(a.k.a. dot product Z

sim(d;.q) = di°q =

where w;; is the weight of term i iIn document j and w,, is the
weight of term i in the query

 For binary vectors, the inner product is the number of
matched query terms in the document (size of
intersection).

 For weighted term vectors, it is the sum of the products
of the weights of the matched terms.



Properties of Inner Product

 The inner product is unbounded.
 Works best when features are either binary or binary-like
0O indicates absence / false

* Requires that features are strictly non-negative



Cosine Similarity Measure

* Cosine similarity measures the cosine of the angle
between two vectors.

 Inner product normalized by the vector lengths.

2 (wy Wig)
COSSim(dj, q) = t]:
Swi S wig
Suppose that
VS has only

3 terms (dimensions)
A, B, and C, corresponding
to t1, t2 and t3 in graph

=(2,3,5) CosSim(D, , Q) = 10/ V(4+9+25)(0+0+4) = 0.81
»=@3,7,1) CosSim(D, , Q) = 2/V(9+49+1)(0+0+4) = 0.13
Q=(0,0,2)

D, is 6 times better than D, using cosine similarity but only 5 times better using inner

product.
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"Norms"

e Properties of norms:
e Non-negativity: It should always be non-negative.
e Definiteness: It is zero if and only if the vector is zero, i.e., zero vector.
e Triangle inequality: The norm of a sum of two vectors is no more than the sum of their norms.

e Homogeneity: Multiplying a vector by a scalar multiplies the norm of the vector by the absolute value of the
scalar.

e Given 2 vectors Xand Y

Euclidian Norm (2-Norm)

e sqrt(sum of squares of Xi-Y))

1-Norm (Manhattan Distance)

Infinity-Norm
e conceptually similar to complete link

P-Norm
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