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What is a Graph?

Graph: structure/concept that expresses a set 
of objects and the relationships between them 
(for mostly nonlinear data)

● Leonhard Euler → author of first graph 
theory paper (1736)



What is a Graph?
Key Terms:
● vertices: objects (dots)
● edges: connections/links (lines)
● path: sequence of edges that can be 

followed from one vertex to another
○ (path from 1 to 4?)

● 2 vertices are adjacent if directly 
connected by an edge

● edge e is incident to vertex v if v is an 
endpoint of e



What is a Graph?
Supplementary Terms:
● degree: # edges connected to a vertex

○ in-degree; out-degree
● weight: value assigned to an edge
● loop: edge connecting vertex to itself
● parallel edge: multiple edges connect 

same pair of vertices



What is a Graph?



Types of Graphs
Sparse Dense



Types of Graphs
Weighted Unweighted



Types of Graphs
Non-SimpleSimple

multiple 
edges

loops



Types of Graphs
Complete Null Trivial



Types of Graphs
Connected Disconnected



Types of Graphs
Undirected Directed
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● out-degree



Types of Graphs
Cyclic Acyclic



Time for a Game!
are the following graphs?



Is this a Graph?



Is this a Graph?

*bonus points 

if you can tell 

me what kind 

of graph!
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Representing Graphs 
Typical graph operations (non-exhaustive):

● insert/delete vertex/edge
● list all vertices/edges
● are the vertices x and y adjacent?
● what/how many edges are connected 

to vertex x?

Main approaches to 
represent/store a graph:

● adjacency list
● adjacency matrix
● edge list



Representing Graphs 
Typical graph operations (non-exhaustive):

● insert/delete vertex/edge
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● are the vertices x and y adjacent?
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Edge List
● List of pairs to represent an edge (A, B)

○ if directed → A: source; B: receiver



Edge List
● List of pairs to represent an edge (A, B)

○ if directed → A: source; B: receiver

● pros: easy to implement
● cons: inefficient checking for the existence of 

an edge & finding all adjacent vertices of a 
given vertex
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Adjacency Matrix
● N * N matrix

○ where N = 
# of vertices

● A[i][j] = 0 or 1
○ if edge 1
○ else 0



Adjacency Matrix
● undirected graphs 

have symmetrical 
adjacency matrices

● directed graphs have 
asymmetrical 
adjacency matrices
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Adjacency Matrix
● try with directed graph:
● if graph has parallel edges, 

can’t store boolean 1 or 0
○ store the number of 

edges in A[i][j]

● what happens with loops?
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Adjacency Matrix
● try with directed graph:
● if graph has parallel edges, 

can’t store boolean 1 or 0
○ store the number of 

edges in A[i][j]

● what happens with loops?
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Adjacency Matrix
● pros:

○ O(1) constant time to check 
edge existence

○ easy to find adj. vertices
■ what vertices are 

adjacent to 4?
● cons:

○ N^2 space
○ hard to find in/out-degree
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Adjacency List
● edge list + adj. matrix hybrid

● array of N lists
○ where N = # of vertices

● A[1] = (linked) list of all vertices 
connected to vertex 1



Adjacency List

● directed graph
○ list receiving vertices

● slightly easier to count 
out-degree (in degree still 
not that good)
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Adjacency List
● pros:

○ more dynamically sized
○ less space (N + M)

■ N = # vertices
■ M = # edges

● cons:
○ slower edge existence checking 

■ (worst case O(M)?)
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Which one to Pick?

Space Efficiency:
● sparse vs 

dense?
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Which one to Pick?

Time Efficiency:
● add an edge?
● find list of 

adjacent 
vertices?
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Which one to Pick?
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Performance Estimate:
● what is the worst 

case of determining if 
vertex v is adjacent 
to vertex w?



Directed Acyclic Graphs
- Combination of a directed + acyclic 

graph:
- Directed : arrows direction 

represents some relationship 
between the nodes

- Acyclic : no cycles
- Used to represent causal relationships 

and model dependencies. 



Graph Traversal

Breadth-First Depth-First



Breadth First Traversal
BFS(graph, start_vertex):
    visited = set()
    queue = Queue()
    
    // Mark the start vertex as visited and enqueue it
    visited.add(start_vertex)
    queue.enqueue(start_vertex)
    
    // Begin BFS traversal
    while queue is not empty:
        // Dequeue a vertex from the queue
        current_vertex = queue.dequeue()
        
        // Process the current vertex (optional)
        
        // Visit all unvisited neighbors of the current vertex
        for each neighbor of current_vertex:
            if neighbor is not in visited:
                // Mark neighbor as visited and enqueue it
                visited.add(neighbor)
                queue.enqueue(neighbor)

# of edges = m, # of vertices = n
Time Complexity: O(m + n)
Space Complexity: O(m + n)
(typically on unweighted graphs)



Depth First Traversal
DFS(graph, start_vertex):
    // Initialize data structures
    visited = set()
    
    // Call recursive helper function to perform DFS
    DFSHelper(graph, start_vertex, visited)

DFSHelper(graph, current_vertex, visited):
    // Mark the current vertex as visited
    visited.add(current_vertex)
    
    // Process the current vertex if needed (optional)
    // Example: print(current_vertex)
    
    // Explore all unvisited neighbors of the current 
vertex recursively
    for each neighbor of current_vertex:
        if neighbor is not in visited:
            DFSHelper(graph, neighbor, visited)

# of edges = m, # of vertices = n
Time Complexity: O(m + n)
Space Complexity: O(n)
(typically on unweighted graphs)



Honorable Mentions 
(weighted)

1. Dijkstra's Algorithm
   
2. A* Search Algorithm
  
3. Bellman-Ford Algorithm
   

Uses:
- Network routing
- Mapping
- Navigation
- Game development
- Robotic
- Network optimization

   



Topological Sorting
- Only for DAGs (sometimes called 

linearization)
- Linear ordering of vertices such 

that for every directed edge u-v, 
vertex u comes before v in 
ordering.

- Useful for task ordering/ scheduling 
- The graph needs to have at least 1 

node with an in-degree = 0 
(Cormen 77)



Topological Sorting

This is Kahn’s 
implementation, authored 
by Arthur Kohlberg Kahn. 
He introduced it in 1962.

There is a DFS implementation 
of topological search, where the 
program recurses over the 
remaining vertices instead of 
removing explored vertices.



Runtime + space 
Run time for topological sorting is Θ(n + 
m) where n is the number of vertices 
and m is the number of edges. 
Worst-case:

- Complete directed graph = 
O(n*n)

- DAG (Kahn's topological sort) = 
O(n + m)

- Space complexity for Kahn’s 
topological sort is O(n)

- In-degree array = O(n)
- ‘Next’ list = O(n)
- Linear Order List = O(n)
- Other variables have constant 

space complexity
* n = number of vertices



Paths / Critical Paths
- Path = “A path in a graph is a sequence of 

vertices and edges that allow you to get from one 
vertex to another (or back to itself)” (Cormen 82)

- Critical Path = longest path in a graph + 
Sum of task times add up to maximum + 
Represents the sequence of tasks that 
need to be completed without delay to 
minimize the project duration What is the critical path from 

source (A) to sink (F)? Is there 
more than one? 



PERT Charts
Program Evaluation and Review Technique

- Project management tool
- Visual representation of tasks needed 

to be completed in order to finish a 
project

- Determines project duration

Cormen uses the example of making Kung 
Pao Chicken (81). 



Critical paths: PERT Charts
- Dummy start and end vertices with time 

= 0
- Task times (weights) associated with 

vertices rather than edges: weight of 
path = sum of weights of vertices

- Shortest path : Negate the task 
times!!! The shortest path would be the 
minimum sum of weights from the start 
to the end. 



Weighted Directed Graphs
-  Pushing task times onto the edges going 

out of a node and negating them 
converts a PERT chart into a weighted 
directed graph

- The shortest path is the one with most 
negative sum of negated task times

- Shortest path in a WDG corresponds to a 
critical path in a PERT chart



UP NEXT…
Shortest path in a Directed Acyclic 
Graph:

- Gives us an idea of how to find 
the shortest path in all directed 
graphs (see Cormen pages 85 
to 88). 



Sources
“Applications of Graph Data Structure.” GeeksforGeeks, 16 Aug. 2018, www.geeksforgeeks.org/applications-of-graph-data-structure/.

Cormen, Thomas H. Algorithms Unlocked. MIT Press, 2013.

“Graph Definitions.” EECS University of California, Berkeley, inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/definitions.html?topic=lab23.topic&step=3&course=. Accessed 6 Mar. 2024.

“Graph Theory.” Wikipedia, 31 Aug. 2020, en.wikipedia.org/wiki/Graph_theory#History.

“Graph Theory - the Computer Science Handbook.” Www.thecshandbook.com, www.thecshandbook.com/Graph_Theory.

Hoppa, Jocelyn. “Graph Algorithms in Neo4j: Graph Algorithm Concepts.” Neo4j Graph Data Platform, 26 Nov. 2018, neo4j.com/blog/graph-algorithms-neo4j-graph-algorithm-concepts/.

https://www.geeksforgeeks.org/topological-sorting/ 

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/ 

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/ 

http://neo4j.com/blog/graph-algorithms-neo4j-graph-algorithm-concepts/
https://www.geeksforgeeks.org/topological-sorting/
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

