
Graph Basics
by Emma and Maha

What is a Graph?

Graph: structure/concept that expresses a set
of objects and the relationships between them
(for mostly nonlinear data)

● Leonhard Euler → author of first graph
theory paper (1736)

What is a Graph?
Key Terms:
● vertices: objects (dots)
● edges: connections/links (lines)
● path: sequence of edges that can be

followed from one vertex to another
○ (path from 1 to 4?)

● 2 vertices are adjacent if directly
connected by an edge

● edge e is incident to vertex v if v is an
endpoint of e

What is a Graph?
Supplementary Terms:
● degree: # edges connected to a vertex

○ in-degree; out-degree
● weight: value assigned to an edge
● loop: edge connecting vertex to itself
● parallel edge: multiple edges connect

same pair of vertices

What is a Graph?

Types of Graphs
Sparse Dense

Types of Graphs
Weighted Unweighted

Types of Graphs
Non-SimpleSimple

multiple
edges

loops

Types of Graphs
Complete Null Trivial

Types of Graphs
Connected Disconnected

Types of Graphs
Undirected Directed

A

B

C

D

A

B

C

D

● in-degree
● out-degree

Types of Graphs
Cyclic Acyclic

Time for a Game!
are the following graphs?

Is this a Graph?

Is this a Graph?

*bonus points

if you can tell

me what kind

of graph!

Is this a Graph?

Is this a Graph?

*bonus points

if you can tell

me what kind

of graph!

Is this a Graph?

Is this a Graph?

Is this a Graph?

Is this a Graph?

Representing Graphs
Typical graph operations (non-exhaustive):

● insert/delete vertex/edge
● list all vertices/edges
● are the vertices x and y adjacent?
● what/how many edges are connected

to vertex x?

Main approaches to
represent/store a graph:

● adjacency list
● adjacency matrix
● edge list

Representing Graphs
Typical graph operations (non-exhaustive):

● insert/delete vertex/edge
● list all vertices/edges
● are the vertices x and y adjacent?
● what/how many edges are connected

to vertex x?

Main approaches to
represent/store a graph:

● adjacency list
● adjacency matrix
● edge list

Edge List
● List of pairs to represent an edge (A, B)

○ if directed → A: source; B: receiver

Edge List
● List of pairs to represent an edge (A, B)

○ if directed → A: source; B: receiver

● pros: easy to implement
● cons: inefficient checking for the existence of

an edge & finding all adjacent vertices of a
given vertex

(1, 2)

(1, 3)

(2, 4)

(3, 4)

(4, 5)

(5, 6)

(5, 7)

(5, 8)

(6. 7)

(7, 8)

Adjacency Matrix
● N * N matrix

○ where N =
of vertices

● A[i][j] = 0 or 1
○ if edge 1
○ else 0

Adjacency Matrix
● undirected graphs

have symmetrical
adjacency matrices

● directed graphs have
asymmetrical
adjacency matrices

1 1

1 1

1 1

1 1 1

1 1 1 1

1 1

1 1 1

1 1

Adjacency Matrix
● try with directed graph:
● if graph has parallel edges,

can’t store boolean 1 or 0
○ store the number of

edges in A[i][j]

● what happens with loops?

A

B

C

D

Adjacency Matrix
● try with directed graph:
● if graph has parallel edges,

can’t store boolean 1 or 0
○ store the number of

edges in A[i][j]

● what happens with loops?

1 1 2

1

1

A

B

C

D

Adjacency Matrix
● pros:

○ O(1) constant time to check
edge existence

○ easy to find adj. vertices
■ what vertices are

adjacent to 4?
● cons:

○ N^2 space
○ hard to find in/out-degree

1 1

1 1

1 1

1 1 1

1 1 1 1

1 1

1 1 1

1 1

Adjacency List
● edge list + adj. matrix hybrid

● array of N lists
○ where N = # of vertices

● A[1] = (linked) list of all vertices
connected to vertex 1

Adjacency List

● directed graph
○ list receiving vertices

● slightly easier to count
out-degree (in degree still
not that good)

A

B

C

D

A

B

C

D

A C

D

C

Adjacency List
● pros:

○ more dynamically sized
○ less space (N + M)

■ N = # vertices
■ M = # edges

● cons:
○ slower edge existence checking

■ (worst case O(M)?)

A

B

C

D

A

B

C

D

A C

D

C

Which one to Pick?

Space Efficiency:
● sparse vs

dense?
A

B

C

D

A

B

C

D

A C

D

C

1 1

1

1

Which one to Pick?

Time Efficiency:
● add an edge?
● find list of

adjacent
vertices?

A

B

C

D

A

B

C

D

A C

D

C

1 1

1

1

Which one to Pick?

A

B

C

D

A

B

C

D

A C

D

C

1 1

1

1

Performance Estimate:
● what is the worst

case of determining if
vertex v is adjacent
to vertex w?

Directed Acyclic Graphs
- Combination of a directed + acyclic

graph:
- Directed : arrows direction

represents some relationship
between the nodes

- Acyclic : no cycles
- Used to represent causal relationships

and model dependencies.

Graph Traversal

Breadth-First Depth-First

Breadth First Traversal
BFS(graph, start_vertex):
 visited = set()
 queue = Queue()

 // Mark the start vertex as visited and enqueue it
 visited.add(start_vertex)
 queue.enqueue(start_vertex)

 // Begin BFS traversal
 while queue is not empty:
 // Dequeue a vertex from the queue
 current_vertex = queue.dequeue()

 // Process the current vertex (optional)

 // Visit all unvisited neighbors of the current vertex
 for each neighbor of current_vertex:
 if neighbor is not in visited:
 // Mark neighbor as visited and enqueue it
 visited.add(neighbor)
 queue.enqueue(neighbor)

of edges = m, # of vertices = n
Time Complexity: O(m + n)
Space Complexity: O(m + n)
(typically on unweighted graphs)

Depth First Traversal
DFS(graph, start_vertex):
 // Initialize data structures
 visited = set()

 // Call recursive helper function to perform DFS
 DFSHelper(graph, start_vertex, visited)

DFSHelper(graph, current_vertex, visited):
 // Mark the current vertex as visited
 visited.add(current_vertex)

 // Process the current vertex if needed (optional)
 // Example: print(current_vertex)

 // Explore all unvisited neighbors of the current
vertex recursively
 for each neighbor of current_vertex:
 if neighbor is not in visited:
 DFSHelper(graph, neighbor, visited)

of edges = m, # of vertices = n
Time Complexity: O(m + n)
Space Complexity: O(n)
(typically on unweighted graphs)

Honorable Mentions
(weighted)

1. Dijkstra's Algorithm

2. A* Search Algorithm

3. Bellman-Ford Algorithm

Uses:
- Network routing
- Mapping
- Navigation
- Game development
- Robotic
- Network optimization

Topological Sorting
- Only for DAGs (sometimes called

linearization)
- Linear ordering of vertices such

that for every directed edge u-v,
vertex u comes before v in
ordering.

- Useful for task ordering/ scheduling
- The graph needs to have at least 1

node with an in-degree = 0
(Cormen 77)

Topological Sorting

This is Kahn’s
implementation, authored
by Arthur Kohlberg Kahn.
He introduced it in 1962.

There is a DFS implementation
of topological search, where the
program recurses over the
remaining vertices instead of
removing explored vertices.

Runtime + space
Run time for topological sorting is Θ(n +
m) where n is the number of vertices
and m is the number of edges.
Worst-case:

- Complete directed graph =
O(n*n)

- DAG (Kahn's topological sort) =
O(n + m)

- Space complexity for Kahn’s
topological sort is O(n)

- In-degree array = O(n)
- ‘Next’ list = O(n)
- Linear Order List = O(n)
- Other variables have constant

space complexity
* n = number of vertices

Paths / Critical Paths
- Path = “A path in a graph is a sequence of

vertices and edges that allow you to get from one
vertex to another (or back to itself)” (Cormen 82)

- Critical Path = longest path in a graph +
Sum of task times add up to maximum +
Represents the sequence of tasks that
need to be completed without delay to
minimize the project duration What is the critical path from

source (A) to sink (F)? Is there
more than one?

PERT Charts
Program Evaluation and Review Technique

- Project management tool
- Visual representation of tasks needed

to be completed in order to finish a
project

- Determines project duration

Cormen uses the example of making Kung
Pao Chicken (81).

Critical paths: PERT Charts
- Dummy start and end vertices with time

= 0
- Task times (weights) associated with

vertices rather than edges: weight of
path = sum of weights of vertices

- Shortest path : Negate the task
times!!! The shortest path would be the
minimum sum of weights from the start
to the end.

Weighted Directed Graphs
- Pushing task times onto the edges going

out of a node and negating them
converts a PERT chart into a weighted
directed graph

- The shortest path is the one with most
negative sum of negated task times

- Shortest path in a WDG corresponds to a
critical path in a PERT chart

UP NEXT…
Shortest path in a Directed Acyclic
Graph:

- Gives us an idea of how to find
the shortest path in all directed
graphs (see Cormen pages 85
to 88).

Sources
“Applications of Graph Data Structure.” GeeksforGeeks, 16 Aug. 2018, www.geeksforgeeks.org/applications-of-graph-data-structure/.

Cormen, Thomas H. Algorithms Unlocked. MIT Press, 2013.

“Graph Definitions.” EECS University of California, Berkeley, inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/definitions.html?topic=lab23.topic&step=3&course=. Accessed 6 Mar. 2024.

“Graph Theory.” Wikipedia, 31 Aug. 2020, en.wikipedia.org/wiki/Graph_theory#History.

“Graph Theory - the Computer Science Handbook.” Www.thecshandbook.com, www.thecshandbook.com/Graph_Theory.

Hoppa, Jocelyn. “Graph Algorithms in Neo4j: Graph Algorithm Concepts.” Neo4j Graph Data Platform, 26 Nov. 2018, neo4j.com/blog/graph-algorithms-neo4j-graph-algorithm-concepts/.

https://www.geeksforgeeks.org/topological-sorting/

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

http://neo4j.com/blog/graph-algorithms-neo4j-graph-algorithm-concepts/
https://www.geeksforgeeks.org/topological-sorting/
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

