
Mar 25

Does a graph have a cycle?

Representing a graph

• Use an adjacency list

Node:
 id: an integer
 links: an array of integers

Graph:
 g: an array of nodes

Position Node

0 {id: 0, links: [1,2]}

1 {id: 1, links:[2]}

2 {id: 2, links:[0,3]}

3 {id: 3: links[3]}

Depth First Search
On an acyclic graph

• Recursion

• No base case!

• Time / space complexity

• Will this explore whole
graph?

• How do we handle
possibility of cycles?

Given: g - a graph

 n - an integer

 (of some node in graph)

DFS(g, n):

 for link in g[n].links:

 DFS(g, link)

Coloring
Extending Node

• white: unvisited

• grey: being processed

• black: visited

• Start by setting color of every
node to white

Node:
 id: an integer
 links: an array of integers
 color: white, black, or grey

Graph:
 g: an array of nodes

DFS: with coloring

• Is this enough?

• Detect a cycle if it exists?

• Stops if there is a cycle?

Given: g - a graph
 n - an integer
 (of some node in graph)
Return -- true if there is a cycle

DFS(g, n):
 g[n].color=grey
 for link in g[n].links:
 if g[link].color==grey
 return true
 if DFS(g, link)==true
 return true
 g[n].color=black
 return false

Final Algorithm
Given: g - a graph
 n - an integer
 (of some node in graph)
Return -- true if there is a cycle

DFSc(g, n):
 g[n].color=grey
 for link in g[n].links:
 if g[link].color==grey
 return true
 if DFSc(g, link)==true
 return true
 g[n].color=black
 return false

for i in 0..nodes.count
 g[i].color=white
for i in 0..nodes.count
 if g[i].color==white
 if DFSc(g,i)
 return true
return false

Aliases

 assignment_num | count | graded
----------------+-------+-------
 2 | 12 | 18
 3 | 11 | 13
 4 | 9 | 17
 5 | 9 | 16
 6 | 6 | 15
 20 | 1
 21 | 1

Graph Representations

Name

Implementation
(Java)

O(space)

Topological sort

• Realistically do not need, just need to find nodes with in-degree of zero

• Complexity of finding this?

• Can we use my cycle colorer to determine path from Washington to DC

Finding Cycles
and Topological Sort

• for a graph G is topo sort unique

• For cycle finding do I need to do
a full Topological Sort?

• if not, what do I need?

Topo Sort Algorithm
Count in-degree of all nodes

Add all indegree=0 to Q

While Q

remove n from Q

for each e (edge from n)

reduce indegree of node e.too

if indegree of e.too == 0

add e.too to Q

Graph Representations

Name

Implementation
(Java)

O(space)

Cost to find indegree:
of each node

of a given node
Cost to find outdegree:

of each node
of a given node

Final Algorithm With Topo Step 1
Given: g - a graph
 n - an integer
 (of some node in graph)
Return -- true if there is a cycle

DFSc(g, n):
 g[n].color=grey
 for link in g[n].links:
 if g[link].color==grey
 return true
 if DFSc(g, link)==true
 return true
 g[n].color=black
 return false

for i in 0..nodes.count
 g[i].color=white
for n in nodes with indegree==0
 if g[i].color==white
 if DFSc(g,i)
 return true
return false

Is Topo (step 1) worth doing?

• Time complexity??

• Likely real-world time??

Use Coloring for maze walking?

• Can I?

• Algorithm

• change from -->

• Benefits?

• Costs?

Given: g - a graph
 n - an integer
 (of some node in graph)
Return -- true if there is a cycle

DFSc(g, n):
 g[n].color=grey
 for link in g[n].links:
 if g[link].color==grey
 return true
 if DFSc(g, link)==true
 return true
 g[n].color=black
 return false

"Death of a salesman" problem is, at core, a maze

