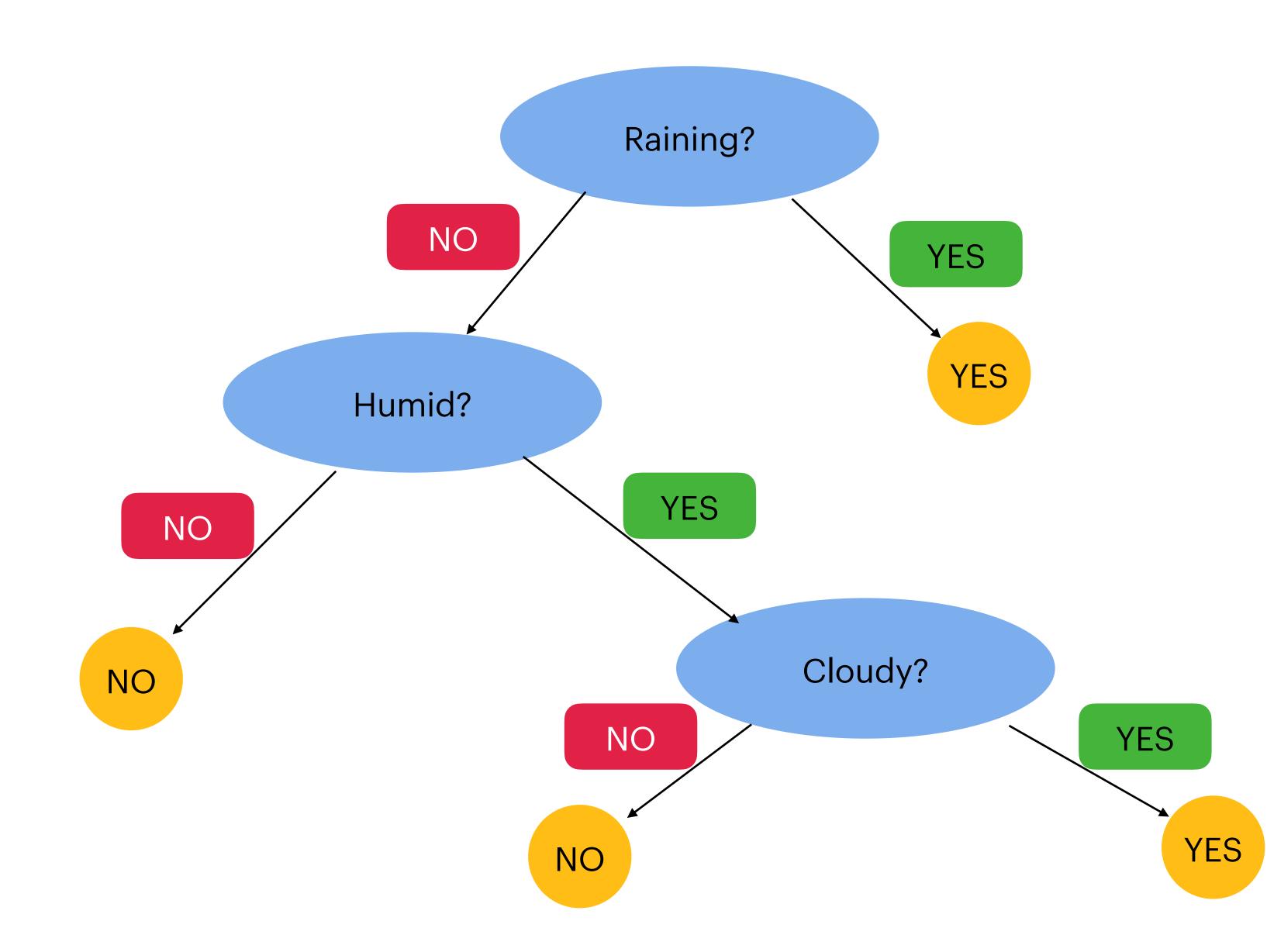
Decision Trees

Mar 18

Should I bring an Umbrella



From MacCormack, pg 90

- ID3 & c4.5 & C5.0 -- J.R. Quinlan
- Classification and Regression Trees -- L Breiman, Freeman, Olshen, Stone
- etc

Flavors

Why Decision Trees

- Simple to understand and interpret.
- Able to handle both numerical and categorical data.
- Requires little data preparation.
- Explainable
- Statistical validation (how reliable is it)
- Mirrors human decision making more closely than other approaches.
- Boostable!!
- removed on subsequent runs.

• Performs well with large datasets. (standard computing resources in reasonable time)

• In built feature selection. Additional irrelevant feature will be less used so that they can be



Building a Decision Tree

- Given a set of examples
 - Each example consists of a set of features
 - - Any of the features could be the decision variable
 - but usually there is some distinguished item
- So to build a decision tree
 - decision variable itself)
 - Split the set according the most informative feature
 - With each subset return to the "Examine ..." step

• There is a special feature -- the decision variable (or class) -- that is the decision you are trying to make

• Examine set and find the "most informative" feature about the decision variable (that is not the

Most Informative????? It depends

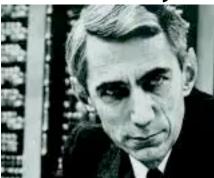
- ID3 (Quinlan, 1986) C4.5 (Quinlan, 1993) both use "entropy"
 - Entropy is a measure of the is a measure of the amount of uncertainty in the (data) set
 - Originally suggested by Shannon (1948) as absolute mathematical limit on how data from the source can be losslessly compressed onto a perfectly noiseless channel

$$\mathrm{H}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

• Where,

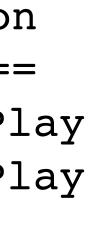
 \bullet

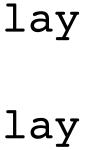
- S The current dataset for which entropy is being calculated
- X The set of classes (the values of the decision variable)
- p(x) The proportion of the number of elements in class to the number of elements in set
 - NOTE: When H(S) = 0, the set is perfectly classified (i.e. all elements in are of the same class).
- Think of Entropy as a measure of how hard a problem is -- the bigger the number the harder the problem



A Sample data set **Play Ball?**

ATTRIBUTE	POSSIBLE VALUES	Outlook	temperature	humidity	windy	decision
======================================		sunny	85	85	false	Don't Pla
outlook sunny, o	sunny, overcast, rain	sunny	80	90	true	Don't Pla
temperature	continuous	overcast	83	78	false	Play
	ture continuous ove + rai y continuous rai + rai j true, false ove	rain	70	96	false	Play
humidity	continuous	rain	68	80	false	Play
	, +	rain	65	70	true	Don't Pla
windy	true, false	overcast	64	65	true	Play
	+====================================	sunny	72	95	false	Don't Pla
		sunny	69	70	false	Play
		rain	75	80		
		sunny	75	70	true	Play
		overcast	72	90	true	Play
		overcast	81	75	false	Play
		rain	71	80	true	Don't Pla





Calculating the information in the system

- $I(P) = -(p_1*log(p_1) + p_2*log(p_2) + ... + p_n*log(p_n))$
 - pn is the fraction of the items in the data set that have value n of the decision variable
 - The information required to "solve" the problem is the sum of the entropy of the "states"
- In the "play" example, we have 2 states for the decision variable -- "do" and "don't"
 - do 9 times
 - don't 5 times
 - so $I(P) = -((9/14)*\log(9/14) + (5/14)\log(5/14))$
 - = $-(0.64^{*}(-0.63) + 0.35^{*}(-1.48))$
 - = -(-0.409 + -0.530)
 - = 0.939

Information Gain

Gain(X,T) = Info(X) - Info(X,T)

|Ti| Info(X,T) = Sum for i from 1 to n of ---- * Info(Ti)| T |

- weighted average of Info(Ti)
 - We can ask this of each

the reduction in the entropy of the system as a result of partitioning

• the information needed to identify the class of an element of T is the weighted average of the information needed to identify the class of an element of Ti, i.e. the

• then pick the feature that makes the largest reduction to the info of the system

Calculating Info(X,T) for the outlook feature

- 3 states:
 - sunny: 5 occurrences (3 do, 2 dont)
 - overcast: 4 occurrences (4 do, 0 dont)
 - rain: 5 occurrences (2 do, 3 dont)
- I(X,T) = 5/14*I(3/5, 2/5) + 4/14*I(4/4, 0/4) + 5/14*I(2/5, 3/5)
- = $2^{*}(0.357^{*}((3/5)^{*}\log(3/5) + (2/5)\log(2/5))) + 0.285^{*}(4/4^{*}\log(4/4) + 0/4)$
- $= 2^{*}(0.357^{*}(0.6^{*}-0.73+0.4^{*}-1.32)) + 0.285^{*}(0)$
- =2*0.357*(0.528+0.442)
- =0.694

4*I(2/5,3/5) 5))) + 0.285*(4/4*log(4/4)+0/4) 85*(0)

Information Gain

- Information Gain = I(X)-I(X,T)
- So for outlook
 - IG(Outlook) = I(X) I(X, Outlook)
 - = 0.939 0.694
 - = 0.246

• IG(Windy) = 0.048

Handling continuous attributes for instance, temperature

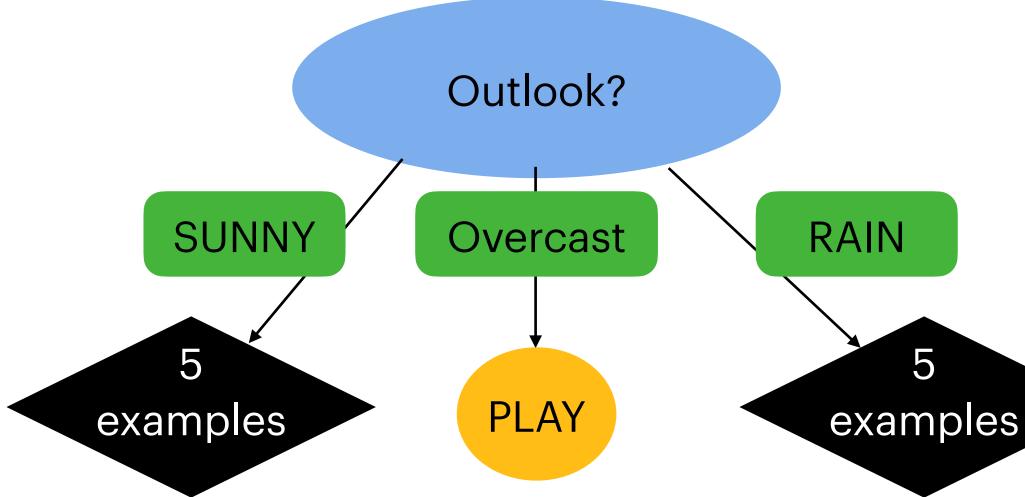
- Sort all values
- Create a T/F for each interval
- Compute IG for each interval

- For Temperature
 - 64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, 85
 - so effectively make 11 boolean features for the top level decision

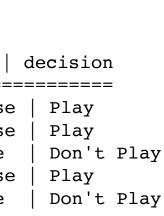
Having Identified the "best feature"

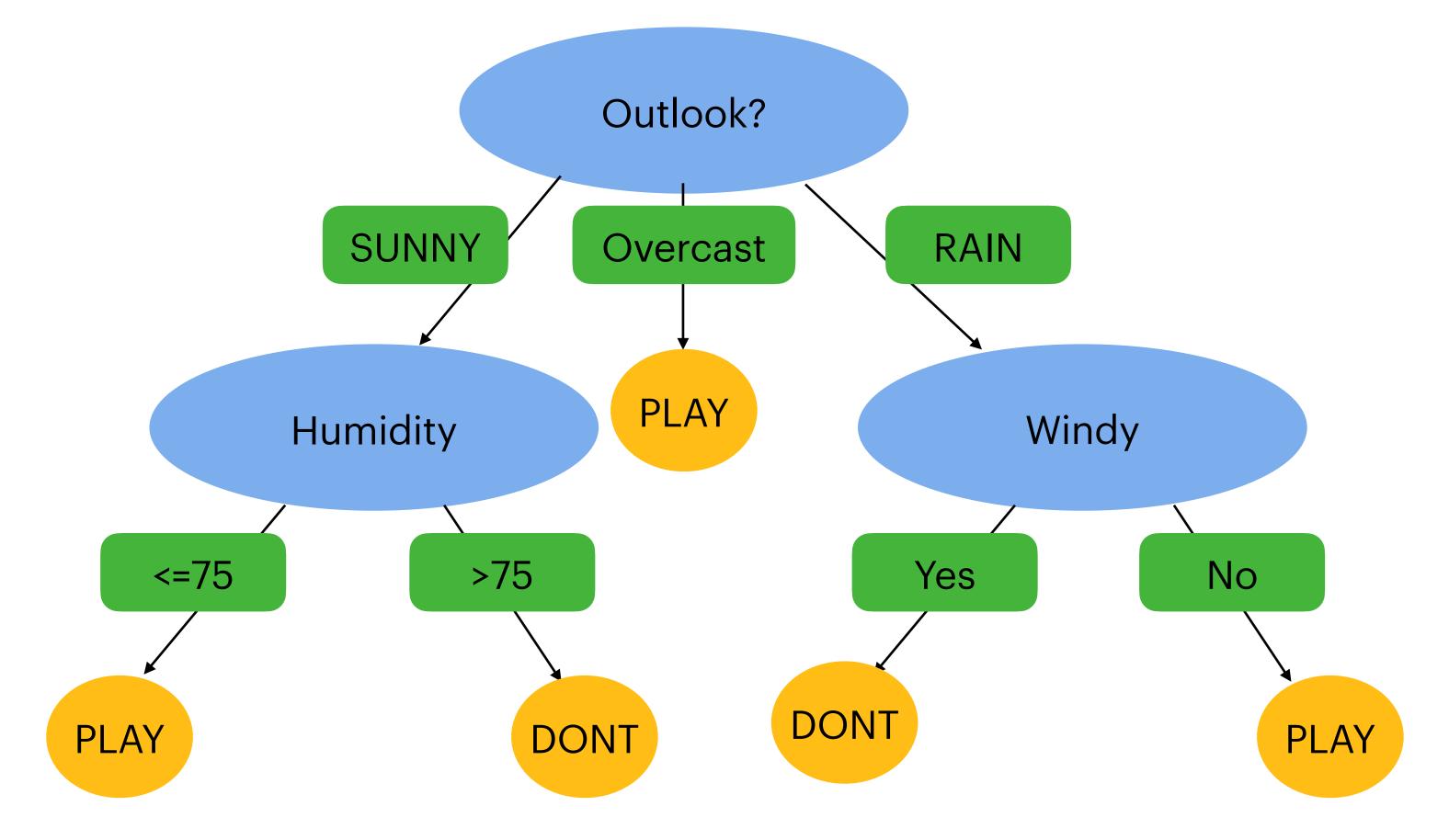
- Create a tree node and add it to the decision tree in the appropriate place
- Split the data
- Recur with each subset of the data

Outlo ===== s



look	temperature	humidity	windy d	lecision	Outlook	temperature	humidity	windy
sunny	85	85	false	Don't Play	rain	70	96	false
sunny	80	90	true	Don't Play	rain	68	80	false
sunny	72	95	false	Don't Play	rain	65	70	true
sunny	69	70	false	Play	rain	75	80	false
sunny	75	70	true	Play	rain	71	80	true





Final Decision Tree

What kind of algorithm is ID3?

Full Algorithm

- function ID3 (R: the features,

Recursive base cases

You do not really have to remove D from R! Why?

begin

the decision feature, return a single node with that value; that are found in records of S; Let D be the attribute with largest Gain(D,S) among attributes in R;

ID3(R-{D}, C, S1), ID3(R-{D}, C, S2), .., ID3(R-{D}, C, Sm);

end ID3;

C: the decision feature, S: a training set) returns a decision tree;

If S is empty, return a single node with value Failure; If S consists of records all with the same value for

If R is empty, then return a single node with as value the most frequent of the values of the decision feature

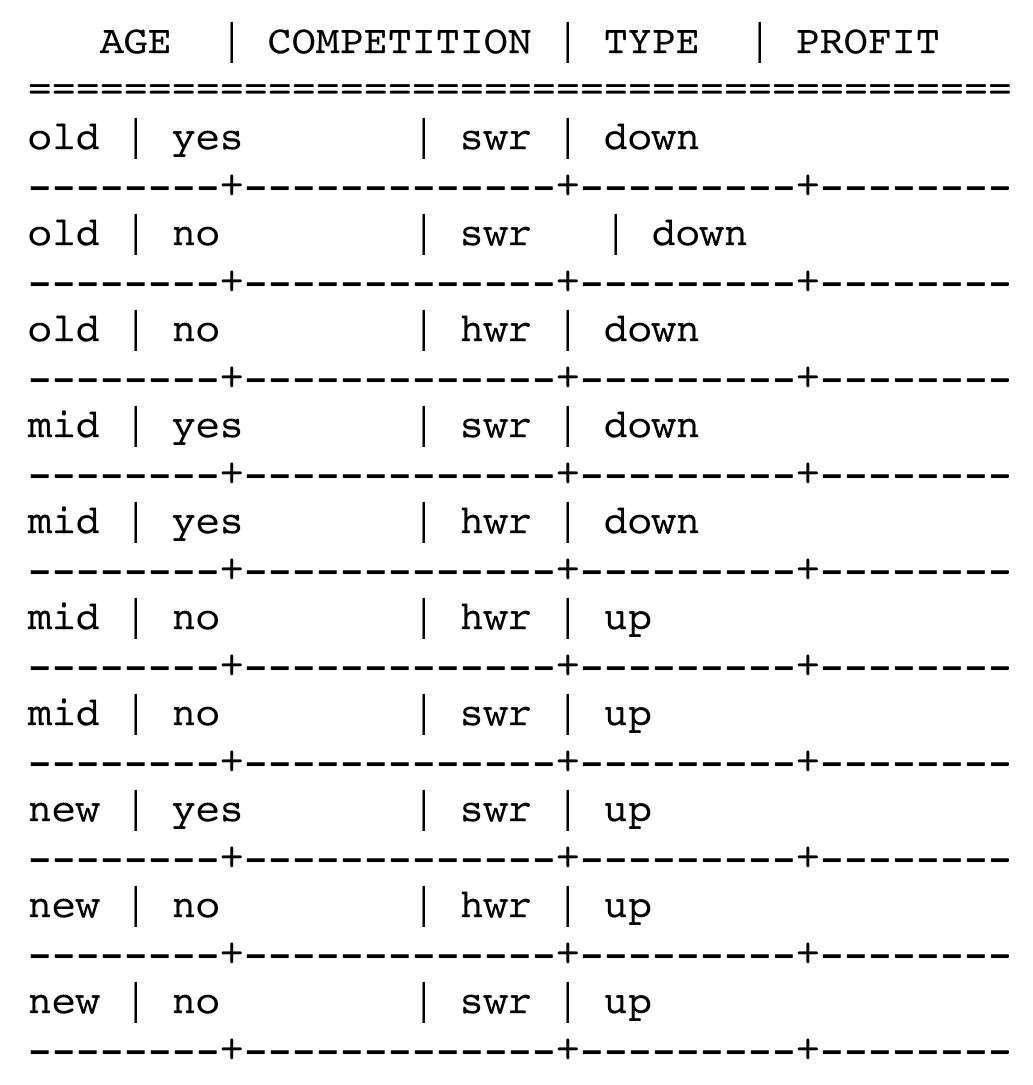
Let $\{dj \mid j=1,2, \ldots, m\}$ be the values of attribute D; Let {Sj| j=1,2, .., m} be the subsets of S consisting respectively of records with value dj for attribute D; Return a tree with root labeled D and arcs labeled d1, d2, ..., dm going respectively to the trees

Why?

There will be errors in training set!

Another Dataset Decision Feature: Profit

ATTRIBUTE	POSSIBLE VALUES
age	old, midlife, new
competition	no, yes
type	software, hardware



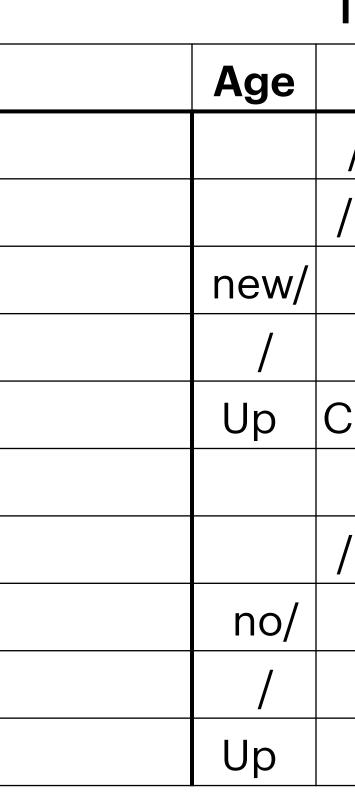


Table 1

/					
/					
		mid		\old	
Co	m	petit	io	n Down	
				/	\mathbf{n}
/					
				\yes	
				\backslash	
				Down	

References

ID3: https://hunch.net/~coms-4771/quinlan.pdf

CART: https://books.google.com/books? xOa9DAqbQkjxSodNrCAobWC3fw#v=onepage&q&f=false

Worksheet example (but there is at least one computational error): https://medium.com/machine-learning-researcher/decision-treealgorithm-in-machine-learning-248fb7de819e

- hl=en&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&ots=sS2mWKCrF6&sig=-