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Decision Trees
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Flavors

• ID3  & c4.5 & C5.0 -- J.R. Quinlan 

• Classification and Regression Trees -- L Breiman, Freeman, Olshen, Stone 

• etc



Why Decision Trees
• Simple to understand and interpret.  

• Able to handle both numerical and categorical data. 

• Requires little data preparation.  

• Explainable  

• Statistical validation (how reliable is it) 

• Performs well with large datasets.  (standard computing resources in reasonable time) 

• Mirrors human decision making more closely than other approaches. 

• Boostable!! 

• In built feature selection. Additional irrelevant feature will be less used so that they can be 
removed on subsequent runs.



Building a Decision Tree

• Given a set of examples 

• Each example consists of a set of features  

• There is a special feature -- the decision variable (or class) -- that is the decision you are trying to make 

• Any of the features could be the decision variable 

• but usually there is some distinguished item  

• So to build a decision tree 

• Examine set and find the "most informative" feature about the decision variable (that is not the 
decision variable itself ) 

• Split the set according the most informative feature 

• With each subset return to the "Examine ..." step



Most Informative?????

• ID3 (Quinlan, 1986) C4.5 (Quinlan, 1993) both use "entropy" 
• Entropy is a measure of the is a measure of the amount of uncertainty in the (data) set 

• Originally suggested by Shannon (1948) as absolute mathematical limit on how data from the source can be losslessly 
compressed onto a perfectly noiseless channel 

•  
• Where, 

• S – The current dataset for which entropy is being calculated 
• X – The set of classes (the values of the decision variable) 
•  p(x) – The proportion of the number of elements in class  to the number of elements in set  

• NOTE: When H(S)==0, the set  is perfectly classified (i.e. all elements in  are of the same class). 
• Think of Entropy as a measure of how hard a problem is -- the bigger the number the harder the problem

It depends

https://en.wikipedia.org/wiki/Lossless


A Sample data set

ATTRIBUTE   |POSSIBLE VALUES
============+=======================
outlook     | sunny, overcast, rain
------------+-----------------------
temperature | continuous
------------+-----------------------
humidity    | continuous
------------+-----------------------
windy       | true, false
============+=======================

Outlook   | temperature | humidity | windy | decision
=====================================================
sunny   |      85     |    85    | false | Don't Play
sunny   |      80     |    90    | true  | Don't Play
overcast|      83     |    78    | false | Play
rain    |      70     |    96    | false | Play
rain    |      68     |    80    | false | Play
rain    |      65     |    70    | true  | Don't Play
overcast|      64     |    65    | true  | Play
sunny   |      72     |    95    | false | Don't Play
sunny   |      69     |    70    | false | Play
rain    |      75     |    80    | false | Play
sunny   |      75     |    70    | true  | Play
overcast|      72     |    90    | true  | Play
overcast|      81     |    75    | false | Play
rain    |      71     |    80    | true  | Don't Play

Play Ball?



Calculating the information in the system
• I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

• pn is the fraction of the items in the data set that have value n of the decision variable 

• The information required to "solve" the problem is the sum of the entropy of the "states" 

• In the "play" example, we have 2 states for the decision variable --  "do" and "don't" 

• do 9 times 

• don't 5 times 

• so I(P) = -((9/14)*log(9/14) + (5/14)log(5/14)) 

•              = -(0.64*(-0.63) + 0.35*(-1.48)) 

•              =  -(-0.409 + -0.530) 

•              = 0.939 



Information Gain

• the information needed to identify the class of an element of T is the weighted 
average of the information needed to identify the class of an element of Ti, i.e. the 
weighted average of Info(Ti) 

• We can ask this of each  

• then pick the feature that makes the largest reduction to the info of the system 

the reduction in the entropy of the system as a result of partitioning 
Gain(X,T) = Info(X) - Info(X,T) 

	 	 	 	 	   |Ti| 
Info(X,T) = Sum for i from 1 to n of  ---- * Info(Ti) 
	 	 	 	 	   |T|



Calculating Info(X,T)

• 3 states:  

• sunny: 5 occurrences (3 do, 2 dont) 

• overcast: 4 occurrences (4 do, 0 dont) 

• rain: 5 occurrences (2 do, 3 dont) 

• I(X,T) = 5/14*I(3/5, 2/5) + 4/14*I(4/4, o/4) + 5/14*I(2/5, 3/5) 

•             = 2*(0.357*((3/5)*log(3/5) + (2/5)log(2/5))) + 0.285*(4/4*log(4/4)+0/4) 

•             = 2*(0.357*(0.6*-0.73 + 0.4*-1.32)) + 0.285*(0) 

•             =2*0.357*(0.528+0.442) 

•             =0.694

for the outlook feature



Information Gain

• Information Gain = I(X)-I(X,T) 

• So for outlook 

• IG(Outlook) = I(X) - I(X, Outlook) 

•       = 0.939 - 0.694  

•       = 0.246 

• IG(Windy) = 0.048



Handling continuous attributes

• Sort all values  

• Create a T/F for each interval 

• Compute IG for each interval 

• For Temperature 

• 64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, 85 

• so effectively make 11 boolean features for the top level decision

for instance, temperature



Having Identified the "best feature"

• Create a tree node and add it to the 
decision tree in the appropriate place 

• Split the data 

• Recur with each subset of the data

Outlook?

RAINSUNNY Overcast

PLAY
5 

examples
5 

examples

Outlook   | temperature | humidity | windy | decision
=====================================================

sunny   |      85     |    85    | false | Don't Play
sunny   |      80     |    90    | true  | Don't Play
sunny   |      72     |    95    | false | Don't Play
sunny   |      69     |    70    | false | Play
sunny   |      75     |    70    | true  | Play

Outlook   | temperature | humidity | windy | decision
=====================================================

rain    |      70     |    96    | false | Play
rain    |      68     |    80    | false | Play
rain    |      65     |    70    | true  | Don't Play
rain    |      75     |    80    | false | Play
rain    |      71     |    80    | true  | Don't Play



Final Decision Tree

Outlook?
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Full Algorithm
function ID3 (R: the features,

          C: the decision feature,
          S: a training set) returns a decision tree;

begin
If S is empty, return a single node with value Failure;
If S consists of records all with the same value for 
   the decision feature, 
   return a single node with that value;
If R is empty, then return a single node with as value
   the most frequent of the values of the decision feature
   that are found in records of S;
Let D be the attribute with largest Gain(D,S) 
   among attributes in R;
Let {dj| j=1,2, .., m} be the values of attribute D;
Let {Sj| j=1,2, .., m} be the subsets of S consisting 
   respectively of records with value dj for attribute D;
Return a tree with root labeled D and arcs labeled 
   d1, d2, .., dm going respectively to the trees 

     ID3(R-{D}, C, S1), ID3(R-{D}, C, S2), .., ID3(R-{D}, C, Sm);

end ID3;

You do not really 
have to remove D 

from R! 
Why?

There will be errors 
in training set!

Why?

What kind of algorithm is 
ID3?

Recursive base cases



Another Dataset

     ATTRIBUTE   | POSSIBLE VALUES
============+=======================
age         | old, midlife, new
------------+-----------------------
competition | no, yes
------------+-----------------------
type        | software, hardware
------------+-----------------------

     AGE | COMPETITION | TYPE | PROFIT
=========================================
old | yes       | swr | down
--------+-------------+---------+--------
old | no       | swr | down
--------+-------------+---------+--------
old | no       | hwr | down
--------+-------------+---------+--------
mid | yes       | swr | down
--------+-------------+---------+--------
mid | yes       | hwr | down
--------+-------------+---------+--------
mid | no       | hwr | up
--------+-------------+---------+--------
mid | no       | swr | up
--------+-------------+---------+--------
new | yes       | swr | up
--------+-------------+---------+--------
new | no       | hwr | up
--------+-------------+---------+--------
new | no       | swr | up
--------+-------------+---------+--------

Decision Feature: Profit



Table 1
	 	 Age
	 	       /  |    \
	 	      /  |     \
	 	  new/    |mid   \old
	 	    /    |       \
	 	  Up  Co m petit io n Down

                       /       \
	 	      /        \
	 	   no/           \yes
	 	    /            \
	 	  Up             Down



ID3:    https://hunch.net/~coms-4771/quinlan.pdf

CART:    https://books.google.com/books?
hl=en&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&ots=sS2mWKCrF6&sig=-
xOa9DAqbQkjxS0dNrCAobWC3fw#v=onepage&q&f=false

Worksheet example (but there is at least one computational error): 
https://medium.com/machine-learning-researcher/decision-tree-
algorithm-in-machine-learning-248fb7de819e 
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