
CS246
C:Text

May 3

Lab
• Find evidence that your browser really does things in parallel.

• Hint, in chrome, look in Developer / Developer Tools
• You can definitely do this without using developer tools, but

you are a developer so …
• Send a screenshot (or picture) of something that shows parallel

actions with a brief paragraph of how your screenshot shows
parallel.

• Open chrome and show the console

2

Does a string contain a substring?
Where? All Where?
• Brute Force
• Indexing

• Inverted Indices
• Boyer Moore Algorithm
• Knuth-Morris-Pratt

3

Brute Force
• call string searched for “needle”
• call string searched within “haystack”

• start at the first letter, if same
• compare next letter of each

• …
• not same, go back to first letter of needle and the next letter of

haystack …

• repeat — possibly a lot

4

Code
• struct to allow

multiple return values
• really should be full

array list, but this
way no malloc/free

• use a “designated
initializer” for
struct

• Complexity Analysis
• O() ??
• what inputs get

close to worst case?

5

typedef struct {
 int count;
 int array[100];
} arrayList;
void printList(arrayList* al) { /* Code not shown */ }
int compare(char *needle, char *stackpart) {
 while (*needle && *stackpart) {
 if (*needle != *stackpart) return 0;
 needle++;
 stackpart++;
 }
 return (*needle == '\0');
}
int strstrGT(char* needle, char* haystack) {
 int hayloc = 0;
 while (*haystack != ‘\0') {
 if (compare(needle, haystack)) return hayloc;
 haystack++;
 hayloc++;
 }
 return -1;
}
arrayList allLocsF(char* needle, char* haystack) {
 arrayList ret = (arrayList){.count = 0};
 int oloc = 0, nloc;
 while (0 <= (nloc = strstrGT(needle, haystack + oloc))) {
 ret.array[ret.count++] = nloc+oloc;
 oloc = oloc + nloc + 1;
 }
 return ret;
}
int main(int argc, char const *argv[])
{
 arrayList allLocs = allLocsF((char *)argv[1], (char *)argv[2]);
 printList(&allLocs);
 return 0;
}

why not return
arrayList*

Indexing
• Idea, preprocess the text into an easily used form

• “bigrams” or trigrams
• restricting to ASCII there are still 128*128 = 16384

bigrams
• 2.048 million trigrams

• With real text might do words rather than bigrams/trigrams
• If working with words then you might build an “Inverted

Index”

6

Bigram index
• On ASCII could start with a table of size 2^^14 (16384)

• Most locations would be empty
• Only feasible for ASCII

• unicode uses 2 bytes per char so would need 2^^30
• again, mostly empty ..

• Or could do hashing
• it takes time to hash and then you have to do the whole

collision resolution thing …

7

Bigram Code
• Approach: bigrams

encoded as a 128x128
array

• then Linked List of
locations

• Yes, stylistically this
code sucks

• Yes, I could
eliminate a lots of
the wasted space

• Preprocess text to be
searched to get all bigrams

8

typedef struct llInt {
 int loc;
 struct llInt *next;
} llInt;

llInt *bigrams[128][128];

void preprocess(char * aa) {
 int loc = 0;
 while (*(aa + 1) != '\0') {
 char aaa = *aa;
 char bbb = *(aa + 1);
 llInt *newll = malloc(1 * sizeof(llInt));
 newll->loc = loc;
 if (bigrams[aaa][bbb]!=NULL) {
 newll->next = bigrams[aaa][bbb];
 }
 bigrams[aaa][bbb] = newll;
 aa++;
 loc++;
 }
}

More
Bigram Code
• to find, first go to

the bigram table.
• then check only

those locations
where there is a
bigram

• best case factor
of 16192 speedup

• But need to be
doing repeated
searches on text

9

int compare(char *needle, char *stackpart) {
 while (*needle && *stackpart)
 {
 if (*needle != *stackpart) {
 return 0;
 }

 needle++;
 stackpart++;
 }
 return (*needle == '\0');
}

llInt* findNeedle(char* needle, char* haystack) {
 llInt *rtn = NULL;
 if (needle == NULL)
 return NULL;
 if ((needle+1)== NULL)
 return NULL;
 char aaa = *needle;
 char bbb = *(needle + 1);
 llInt * candidates = bigrams[aaa][bbb];
 while (candidates!=NULL) {
 if (compare((needle+2), (haystack+candidates->loc+2))) {
 llInt * newLL = malloc(1 * sizeof(llInt));
 newLL->loc = candidates->loc;
 newLL->next = rtn;
 rtn = newLL;
 }
 candidates = candidates->next;
 }
 return rtn;
}

Bigrams vs Brute Force

10

Brute
Force

Average
time

Bigrams average
time

marginal
time

speedup

reps = 1
needle = 6
haystack=10000000

0.167 0.167 1.903 1.903 —

reps = 200 6.023 0.030115 2.07 0.01035 0.000835 36.0658682634731

reps = 1000 29.513 0.029513 3.6 0.036 0.001697 17.3912787271656

Boyer-Moore
Algorithm
• Rather than preprocess the

text to be searched (the
haystack) pre-process the
thing you are searching for
(the needle).

• see “increment i
appropriately”

• Further idea: rather than
checking from the start for
the needle, check from the
end

11

int i = needlelen - 1 ;
while (i < haystacklen) {
 int j = needlelen - 1;
 #ifdef ONCE
 printf("C: %d %d\n", i, j);
 #endif
 while (j >= 0 && (haystack[i] == needle[j]))
 {
 #ifdef ONCE
 printf("M: %d %d\n", i, j);
 #endif
 --i;
 --j;
 }
 if (j < 0) {
 return i+1;
 }
 // increment i appropriately
}

B-M
Bad Character Rule
• Idea: when you get to a mismatch between needle and

haystack, you can use information about the location of the
mismatched chars to get information about how far ahead in
in the haystack the next match to need could possibly be.

• EX: needle = “aaaaa” haystack=“aaaabaabaa”
• start with comparing n[4] to h[4]

• No match. But ‘b’ is NOT in needle so the next possible
place that needle could possibly match to haystack
would be 4 + len(needle);

• So, next check is n[4] and h[9]

• bad char rule: part 1: for any character not in needle, skip
ahead = length of needle.

• Best Case Complexity? 12

0 1 2 3 4
a a a a a

0 1 2 3 4 5 6 7 8 9
a a a a b a a b a a

BM
Bad Char Rule — Continued
• what about characters in

needle?
• skip = distance of the last

occurrence of the character
from the end

• Importantly: skip in haystack
is from the point at which
the mismatch was detected.

13

for (int i=0; i < needlelen-2; i++) {
 delta1[needle[i]] = needlelen-1 - i;

0 1 2 3 4
a b a c d

Needle

a b c d e f
2 3 5 5 5 5

delta1

BM
Bad Char Rule — Issue
• suppose

• needle = nekjq
• haystack = aaakekjqaa

• Now align q’s and compare
• work backward all the way to n!=k

• bad char rule says jump forward 2.
• Note that this actually leaves you with “negative progress”

• So now compare q in needle to k in haystack.
• q!=k so bad char rule says jump forward 2
• Which bring you back to where you started!!! LOOP. BAD

14

n e k j q a
4 3 2 5 5 5

delta1

BM
Suffix Rule 1
• Jump ahead based on

• whether the beginning
of the needle is echoed
at the end of the
needle

• how much of the suffix
has been matched

• Determine “index of last
prefix” by working
backwards

• * — see next slide 15

Position Index of
“last prefix”

len-1-pos Skip

0 4 5 9
1 4 4 8
2 4 3 7
3 4 2 6
4 6 1 7* —— 3
5 6 0 6* —— 1

Position Index of
“last prefix”

len-1-pos Skip

0 5 4 9
1 5 3 8
2 5 2 7
3 5 1 6
4 5 0 5* —— 1

nekjq

bacaba

BM
Suffix Rule pt 2
• Since suffix_length may not be unique

• take the minimum value,

• ABYXCDBYX

16

d2: 17
d2: 16
d2: 15
d2: 14
d2: 13
d2: 8
d2: 11
d2: 10
d2: 1

d2: 17
d2: 16
d2: 15
d2: 14
d2: 13
d2: 12
d2: 11
d2: 10
d2: 9

B-M vs Brute Force

• Complexity: O(m+n) if pattern not in text, O(mn) if pattern is in text
• Best Case: m/n

17

haystack=50,000,000
reps = 100

Boyer Moore Brute Force

needle=5 11.521 15.353

10 6.414 15.136

20 4.562

40 3.352

80 3.237

Knuth Morris Pratt
• asymptotically better than B-M

• in practice B-M usually a better

18

19

20

Inverted Index

system

computer

database

science D2, 4

D5, 2

D1, 3

D7, 4

Index terms df

3

2

4

1

Dj, tfj

Index file Postings lists

• • •

Tokenizer

Token stream Friends Romans Countrymen

Inverted Index Construction

Linguistic modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed Friends, Romans, countrymen.

Sec. 1.2

Indexer steps: Token sequence

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

Indexer steps: Dictionary & Postings

• Multiple term entries in a
single document are
merged.

• Split into Dictionary and
Postings

• Doc. frequency
information is added.

Sec. 1.2

Where do we pay in storage?

24
Pointers

Terms
and

counts

IR system
implementation
• How do we index

efficiently?
• How much storage

do we need?

Sec. 1.2

Lists of
docIDs

Almost always
store in-

document
frequency

