
CS246
C: parallel

May 3

Lab
• Write a program that can take 8, 3 bit numbers and output a string of 24 bits

• For example:
• a.out 0 1 2 3 4 5 6 7
• 000001010011100101110111

• (read each number as a char, then take only the 3 least significant bits from the
char)

• You can just accumulate the bits in a character string or write directly to stdout.

• For an additional complication (not required or even recommended)
• write the 8 3 bit numbe
• rs into 3 8 bit numbers and then output those numbers. This will mean that some

3 bit number are represented across 2 8 bit numbers.

2

My Solution

3

int main(int argc, char const *argv[])
{
 unsigned char output = 0;
 unsigned int res = 0;
 int b = 0;
 for (int i = 1; i <= 8; i++)
 {
 int num = argv[i][0] - ‘0’; // atoi(argv[i]);
 for (int j = 0; j < 3; j++)
 {
 int v = (num & 4) ? 1 : 0;
 output <<= 1;
 printf("%d", v);
 output |= v;
 num <<= 1;
 b++;
 if (b>=8) {
 printf("\n%d\n", output);
 b = 0;
 output = 0;
 }}}
 printf("\n");
 return 0;

My Other
Solution

4

int main(int argc, char const *argv[])
{
 unsigned char output = 0;
 unsigned int res = 0;
 int placer = 1 << 7;
 for (int i = 1; i <= 8; i++)
 {
 int num = atoi(argv[i]);
 int mask = 1 << 2; // or just mask = 4;
 for (int j = 0; j < 3; j++)
 {
 int v = (num & mask);
 printf("%d", v);
 if (v)
 output |= placer;
 mask >>= 1;
 placer >>= 1;
 if (!placer) {
 printf("\n%d\n", output);
 placer = 1 << 7;
 output = 0;
 }
 }
 }
 printf("\n");
 return 0;
}

• Rather than shifting
bits in the number
being scanned here I
shift bits in the mask
• rather than shifting

bits in the answer,
shift bits in the thing
that might be put in
the answer
• maybe more

readable

Parallel Programming (in C)
• 2 main ways to do parallel

• by process
• multiple independent jobs

• by thread
• parallelism within a single job

• Choice is dependent on task and user style

• Why do parallel?
• I have 32 cores on my machine ….
• I have 300 servers down the the server room …

5

Process vs Thread

6

Also, processes can be on different
machines in different places

Why not parallel
• Overhead
• synchronization
• accessing of shared resources

• Hazards
• deadlocks / threadlocks
• A is waiting for B, and B is waiting for A

• Race Conditions
• if A before B get C, if B before A get D

• Debugging

7

Process Parallelism
• Allows for huge scale
• consider Google and the

web crawling problem
• Each oval represents a

process type
• each type has 1 or

more actual processes
• The processes

communicate by reading
and writing files

8

Problem: Perfect numbers
• a “perfect number” is one for which the factors,

excluding itself sum to the number
• 6 = 1+2+3
• 28 = 1+2+4+7+14

• Euclid proved a formation rule (IX.36)
whereby N=q(q+1)/2 is an even perfect number
whenever q is a prime of the form 2P-1 for prime P —
a Mersenne prime. Two millennia later, Euler proved
that all even perfect numbers are of this form.

• Nice but we are going to do brute force

9

Brute Force
perfect numbers

10

typedef struct {
 int count;
 int data[1000];
} accumul;
void pres(char *head, accumul dat)
{
 for (int i = 0; i < dat.count; i++)
 printf("%s %2d %d\n", head, i, dat.data[i]);
}

accumul perfect;
long curr = 0;

void checkit() {
 int val = curr++;
 int j = sqrt(val);
 int sm = 1;
 for (int k = 2; k <= j; k++) {
 int div = val / k;
 if (k*div == val) {
 sm += k;
 if (k!=div)
 sm += div;
 }
 }
 if (sm == val) {
 perfect.data[perfect.count++] = val;
 }
}

int main(int argc, char const *argv[])
{
 perfect.count = 0;

 curr = atol(argv[1]);
 long max = atol(argv[2]);
 while (1) {
 checkit();
 if (curr > max)
 break;
 }
 pres("perfect", perfect);
 printf("Complete %s %s\n", argv[1], argv[2]);
 return 0;
}

do not put
in 5 twice
for 25

Process Parallelism
• If on single machine then useless to start more processes than

the machine can support
• how to know?
• cat /proc/cpuinfo (| grep processor) (tail -1)

• or just UNIX> nproc

• Then what???
• A: a shell script!!!!

11

Shell script for process parallelism
• by default starts as many processes as there are CPUs on

machine

• While loop waits for processes to finish before shell script
competes

• can even start on other machines using ssh
• UNIX> ssh powerpuff “ls”

• would run ls command on powerpuff (which is a name
set up in my .ssh/config file)

• See process.sh in VSC

12

Thread-level parallelism
• added to C in C11
• by which time there were a lot of independently developed

approaches, many of which got included in C11
• LOTS of ways in standard C, I will discuss one

• pthread
• POSIX threads
• Portable Operating System Interface

• atoms
• locks

13

Thread saftey
• When dealing with threaded programs that share data

structures need changes made by one thread can affect the run
of another thread

14

Global Thread 1 Thread 2
int *a;

a=malloc(1*sizeof(int));
printf(“%d\n”, *a);
free(a);

printf(“%d\n”, *a);

Free can never be made truly “thread safe”

Thread saftey is time consuming
• Java often has two classes that are identical except that one

“thread-safe” and one is not
• Vector and ArrayList

• ArrayList NOT safe but much faster
• Synchronized
• only one operation allowed to happen at a time

15

C creating multiple threads
• gcc -pthread

• need this arg when compiling

• pthread_create
• takes 4 args
• pointer to a struct to hold info about

the thread
• NULL == create with default

“attributes”
• the function to start
• Argument to the function

• pthread_join
• blocks as long as the thread is

running

• Note that two loops here a very similar to
the shell script loops

16

 pthread_t threads[NTHREADS];
 for (int i = 0; i < NTHREADS; i++)
 {
 tInfo[i] = (threadInfo){.threadNum = i};
 pthread_create(threads + i, NULL, threadFunc, NULL);
 }
 for (int i = 0; i < NTHREADS; i++) {
 pthread_join(threads[i], NULL);
 }

Start
threads

Wait for
threads to
complete

pointer to
pthread_t
struct

pthread_t struct

Why not a pointer here?

Simple Thread Example

17

void * myThreadFun(void *vargp) {
 int *ti = vargp;
 printf("started thread %d\n", *ti);
 sleep(2);
 printf("finishing thread %d\n", *ti);
}
int main(int argc, char const *argv[]) {
 int i;
 int N = atoi(argv[1]);
 // Let us create N threads
 pthread_t threads[N];
 for (i = 0; i < N; i++)
 {
 pthread_create(threads+i, NULL, myThreadFun, &i);
 }
 for (int i = 0; i < N; i++) {
 pthread_join(threads[i], NULL);
 printf("Joined %d\n", i);
 }
 pthread_exit(NULL);
 return 0;
}

UNIX> gcc -pthread pp.c
UNIX> a.out 5
started thread 1
started thread 2
started thread 3
started thread 4
started thread 5
finishing thread 5
finishing thread 5
finishing thread 5
finishing thread 5
finishing thread 5
Joined 0
Joined 1
Joined 2
Joined 3
Joined 4
UNIX>

threadFunc for perfect number
• Does the work of the

thread
• takes a single argument
• declared as a void*
• So almost always a

struct that was filled
just before thread
started

• So could just take
checkit code, add a
void* param and go!

18

void checkit(void * argum) {
 int val = curr++;
 int j = sqrt(val);
 int sm = 1;
 for (int k = 2; k <= j; k++) {
 int div = val / k;
 if (k*div == val) {
 sm += k;
 if (k!=div)
 sm += div;
 }
 }
 if (sm == val) {
 perfect.data[perfect.count++] = val;
 }
}

Thread problems

19

void checkit(void * argum) {
 int val = curr++;
 int j = sqrt(val);
 int sm = 1;
 for (int k = 2; k <= j; k++) {
 int div = val / k;
 if (k*div == val) {
 sm += k;
 if (k!=div)
 sm += div;
 }
 }
 if (sm == val) {
 perfect.data[perfect.count++] = val;
 }
}

Multiple threads could try
to change this add the same
time

Multiple thread could try to
change this add the same
time Multiple thread could try to

change this add the same
time

mutex locks
• Idea: say that a part of the

code can only run on one
thread at a time.
• Any other thread that wants

to use must wait for the
current thread to complete

• Separate lock for each thing
being protected
• I like putting protected

sections in own funcs

20

pthread_mutex_t mutexAV;
pthread_mutex_t mutexGN;

void addValue(accumul *addTo, int val) {
 pthread_mutex_lock(&mutexAV);
 addTo->data[addTo->count++] = val;
 pthread_mutex_unlock(&mutexAV);
}

int getNumAndIncr() {
 pthread_mutex_lock(&mutexGN);
 int val = curr;

curr++;
 pthread_mutex_unlock(&mutexGN);
 return val;
}

// IN MAIN
 pthread_mutex_init(&mutexAV, NULL);
 pthread_mutex_init(&mutexGN, NULL);

Atomic Variables
• getNumAndIncr (and the like) is really common
• So rather than rewriting all the time
• Atomic variables

• #include <stdatomic.h>

• _Atomic long g = ATOMIC_VAR_INIT(0);

• functions like atomic_fetch_add
• even better — gives you thread-safe ++, - -,
• Atomics are faster than rolling you own with locks

21

Threaded
Perf Finder
• Base code

• no particular need for
accumul struct
• threadInfo struct will

be passed into each
thread
• just allows thread

to know its
number

• update to perfect number
store is lock protected
• number being checked is

atomic

22

typedef struct {
 char header[20];
 int count;
 int data[1000];
} accumul;
typedef struct {
 int threadNum;
} threadInfo;
accumul perfect;
int N = 5;
_Atomic long curr = ATOMIC_VAR_INIT(0);
pthread_mutex_t mutexAV;
void addValue(accumul *addTo, int val) {
 pthread_mutex_lock(&mutexAV);
 addTo->data[addTo->count++] = val;
 pthread_mutex_unlock(&mutexAV);
}
void pres(accumul* dat) {
 printf("%s %d\n", dat->header, dat->count);
 for (int i = 0; i < dat->count; i++)
 printf(" %2d %d\n", i, dat->data[i]);
}

Thread worker
• threads keep going

until reaching the
target number
• communication

between threads is
just through curr
variable

23

void* checkit(void * args) {
 threadInfo *tInfo = args;
 while (1) {
 long val = curr++; // thread safe!!
 if (val % 1000000 == 0)
 printf("Thread:%2d number:%10ld\n", tInfo->threadNum, val);
 if (val > N) break;
 int j = sqrt(val);
 int sm = 1;
 for (int k = 2; k <= j; k++) {
 int div = val / k;
 if (k * div == val) {
 sm += k;
 if (k != div)
 sm += div;
 }
 }
 //printf("%d %d\n", val, sm);
 if (sm == val) {
 addValue(&perfect, val);
 }}
 return NULL;
}

Main
• start threads … let then run

• Perfect numbers are rare and
not related to each other so
this amount fo communication
and control works
• because perfect numbers are

unrelated could easily do
process parallel

• Advantages of thread parallel
for this task over process
parallel?

24

int main(int argc, char const *argv[])
{
 pthread_mutex_init(&mutexAV, NULL);

 perfect.count = 0;
 sprintf(perfect.header, "perfect");

 N = atoi(argv[1]);
 curr = 0;
 pthread_t threads[NTHREADS];
 threadInfo tInfo[NTHREADS];
 for (int i = 0; i < NTHREADS; i++)
 {
 tInfo[i] = (threadInfo){.threadNum = i};
 pthread_create(threads + i, NULL, checkit, &tInfo[i]);
 }
 for (int i = 0; i < NTHREADS; i++) {
 pthread_join(threads[i], NULL);
 printf("Joined %d\n", i);
 }

 pres(&perfect);
 return 0;
}

Finding Primes

• Again using a brute force approach
• check if number is evenly divisible by all

smaller primes

• Problem, need to do a lot more with the
recording than with perfect numbers
• there are a lot more primes than perfect

numbers
• BUT the code is largely the same

25

primes

26

void* getPrimes(void * args) {
 threadInfo *tInfo = args;
 while (primes.count < MAXX - 1)
 {
 long np = atomic_fetch_add(&num, 2);
 long sq = sqrt(np);
 int g = 1; // true a long as he number could still be prime
 int mxx = primes.count - 2;
 for (long i = 0; g == 1 &&
 i < mxx &&
 primes.data[i] <= np; i++)
 {
 if (np % primes.data[i] == 0)
 g = 0;
 }
 if (g) {
 updatePrimes(np);
 if (primes.count % 1000 == 0)
 printf("%d %d %ld\n", tInfo->threadNum, primes.count, primes.data[primes.count - 1]);
 }}}

Only odds

Get a local copy of this value.
Otherwise can get problems when
another thread updates. Could
handle with atomic or locks. This
is faster and works for this
problem

Other forms of Parallelism
• My examples were both of compute bound problems so 1

thread (or process) per core is entirely reasonable.
• multiple thread — single memory

• For an I/O bound process other choices
• maybe many more threads than cores as most threads are

idle
• still might be multiple thread — single memory

• E.g. Web Browser

27

Lab
• Find evidence that your browser really does things in parallel.
• Hint, in chrome, look in Developer / Developer Tools
• You can definitely do this without using developer tools, but

you are a developer so …
• Send a screenshot (or picture) of something that shows parallel

actions with a brief paragraph of how your screenshot shows
parallel.

28

