
CS246
Unix: the network

C: bits
April 26

FROM MONDAY
fwrite fixed
• Why not write

the array of
pointers??

• Problems
remain??
• UNFREED

MEMORY

2

#define SIZ 100
typedef struct
{
 int aa;
 double bb;
} aabb;
int main(int argc, char const *argv[])
{
 aabb **arr = malloc(SIZ * sizeof(aabb *));
 for (int i = 0; i < SIZ; i++) {
 arr[i] = malloc(1 * sizeof(aabb));
 arr[i]->aa = i;
 arr[i]->bb = sqrt(i);
 }
 FILE *fp = fopen("astrfp", "w");
 int d = SIZ;
 fwrite(&d, sizeof(int), 1, fp);
 for (int i = 0; i < SIZ; i++)
 fwrite(arr[i], sizeof(aabb), 1, fp);
 fclose(fp);
 return 0;
}

Lab
• Given the table at right
• Construct a Huffman tree
• Encode
• abed

• Decode
• 101100110011010

• Send: tree, encoding and
decoding

3

Character Count

a 2

b 5

c 14

d 14

e 7

Hufmann
Tree Building
• First item off PQ is

left child, second
item is right child
• Break ties in favor of

lesser char/id.
• when making new

nodes, number
them -1, -2, -3 …
• use that number

when breaking
ties.

4

Char Count Code

a 2 1000
b 5 1001
e 7 101
c 14 11
d 14 0

a,2 b,5

-1, 7

-3,28d,14

-2,14 c,14

e,7

-4, 42

printenv
• All of the “environment

variables” set on machine

• printenv XXX
• show value of that env

var
• printenv HOME

• echo $XXX
• same as printenv XXX

but more shell script
like
• echo $HOME

5

[gtowell@benz ~]> printenv
SHELL=/bin/bash
PWD=/home/gtowell
LOGNAME=gtowell
XDG_SESSION_TYPE=tty
MOTD_SHOWN=pam
HOME=/home/gtowell
LANG=en_US.UTF-8
LC_TERMINAL=iTerm2
SSH_CONNECTION=100.14.58.158 51932 165.106.10.169 22
XDG_SESSION_CLASS=user
TERM=xterm-256color
USER=gtowell
LC_TERMINAL_VERSION=3.4.5
DISPLAY=localhost:10.0
SHLVL=1
XDG_SESSION_ID=2447
XDG_RUNTIME_DIR=/run/user/10005
PS1=\e[0;36m[\u@\h \W]> \e[0m
SSH_CLIENT=100.14.58.158 51932 22
XDG_DATA_DIRS=/usr/local/share:/usr/share:/var/lib/snapd/desktop
PATH=.:/home/gtowell/bin:/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/
local/games:/snap/bin:/usr/bin
DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/10005/bus
SSH_TTY=/dev/pts/0
_=/bin/printenv

Your Machine
• printenv HOST

• probably returns nothing, on
some systems, the hostname

• hostname -i -I -d

• 127.0.0.1/127.0.0.1 == localhost.
• allows for the simplect

possible network test — call
yourself.

• IP address and DNS name
• IP address uniquely identifies

machine
• sort of

6

[gtowell@benz ~]> cat /proc/version
Linux version 5.8.0-50-generic (buildd@lgw01-amd64-030)
(gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0, GNU ld (GNU
Binutils for Ubuntu) 2.34) #56~20.04.1-Ubuntu SMP Mon Apr
12 21:46:35 UTC 2021

[gtowell@benz ~]> hostname -d
cs.brynmawr.edu
[gtowell@benz ~]> hostname -i
127.0.1.1
[gtowell@benz ~]> hostname -I
165.106.10.169
[gtowell@benz ~]> hostname
benz

[gtowell@powerpuff ~]$ who
compsci tty1 2020-03-03 18:02
gtowell pts/4 2021-04-28 06:21 (100.14.58.158)
mvajpeyyii pts/13 2021-04-28 06:46 (165.106.118.210)
ddiaz1 pts/20 2021-04-19 10:51 (165.106.10.235)
gtowell pts/19 2021-04-28 06:54 (100.14.58.158)
[gtowell@powerpuff ~]$ whoami
gtowell

DNS
• Domain Name Service

• translate a DNS name into an IP address
• idea: you “register” a domain name with the appropriate agent.

That agent then knows your IP address
• “Agents” exists for each “.” separated part of a name.
• Root level … .com, .edu …

• so Bryn Mawr had to register the name brynmawr with the agent for
.edu creating brynmawr.edu

• Then the CS department had to register the name cs with Bryn Mawr,
thereby creating “cs.brynmawr.edu"
• Then to create name powerpuff.cs.brynmawr.edu …

7

http://cs.brynmawr.edu
http://powerpuff.cs.brynmawr.edu

More DNS
• a — mapping

from name to IP
• MX— email

handling
• NS—name server
• cname
• subdomains

8

screenshot from godaddy.com

DNS lookup
• To get to powerpuff.cs.brynmawr.edu you could then
• ask .edu agent how to get to brynmawr.edu
• then ask brynmawr.edu agent
• …

• Realistically, almost never happens.
• DNS servers

9

http://powerpuff.cs.brynmawr.edu
http://brynmawr.edu
http://brynmawr.edu

DNS lookup tools
• UNIX> dig
• shows most of the info

from godaddy…
• UNIX> nslookup
• simplest to use

• UNIX> host -t [a DNSname]
• note the a is for the “a

record”

10

[gtowell@powerpuff ~]$ host -t a brynmawr.edu
brynmawr.edu has address 3.225.214.100
brynmawr.edu has address 18.211.178.199

[gtowell@powerpuff ~]$ nslookup brynmawr.edu
Server: 165.106.148.5
Address: 165.106.148.5#53

Name: brynmawr.edu
Address: 18.211.178.199
Name: brynmawr.edu
Address: 3.225.214.100

[gtowell@powerpuff ~]$ nslookup powerpuff.cs.brynmawr.edu
Server: 165.106.148.5
Address: 165.106.148.5#53

Name: powerpuff.cs.brynmawr.edu
Address: 165.106.10.113

[gtowell@powerpuff ~]$ hostname -i
165.106.10.113

Unix:
Network tools
• Ping
• is machine

reachable from
your machine
and
• if so, an

indication of
connection
speed and
reliability

11

geoffreytowell@Geoff2020Mac Lectures % ping cs.brynmawr.edu
PING cs.brynmawr.edu (165.106.10.107): 56 data bytes
64 bytes from 165.106.10.107: icmp_seq=0 ttl=246 time=21.515 ms
64 bytes from 165.106.10.107: icmp_seq=1 ttl=246 time=33.871 ms
64 bytes from 165.106.10.107: icmp_seq=2 ttl=246 time=26.430 ms
^C
--- cs.brynmawr.edu ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 21.515/27.272/33.871/5.079 ms
geoffreytowell@Geoff2020Mac Lectures % ping powerpuff.cs.brynmawr.edu
PING powerpuff.cs.brynmawr.edu (165.106.10.113): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
^C
--- powerpuff.cs.brynmawr.edu ping statistics ---
4 packets transmitted, 0 packets received, 100.0% packet loss
geoffreytowell@Geoff2020Mac Lectures % ping google.com
PING google.com (142.250.64.110): 56 data bytes
64 bytes from 142.250.64.110: icmp_seq=0 ttl=119 time=18.052 ms
64 bytes from 142.250.64.110: icmp_seq=1 ttl=119 time=29.780 ms
^C
--- google.com ping statistics ---
3 packets transmitted, 2 packets received, 33.3% packet loss
round-trip min/avg/max/stddev = 18.052/23.916/29.780/5.864 ms

Ping
Higher level

12

Using deft allegory, the authors have provided an insightful and intuitive explanation of one of
Unix's most venerable networking utilities. Even more stunning is that they were clearly working
with a very early beta of the program, as their book first appeared in 1933, years (decades!)
before the operating system and network infrastructure were finalized.

The book describes networking in terms even a child could understand, choosing to
anthropomorphize the underlying packet structure. The ping packet is described as a duck, who,
with other packets (more ducks), spends a certain period of time on the host machine (the wise-
eyed boat). At the same time each day (I suspect this is scheduled under cron), the little packets
(ducks) exit the host (boat) by way of a bridge (a bridge). From the bridge, the packets travel
onto the internet (here embodied by the Yangtze River).

The title character -- er, packet, is called Ping. Ping meanders around the river before being
received by another host (another boat). He spends a brief time on the other boat, but eventually
returns to his original host machine (the wise-eyed boat) somewhat the worse for wear.

If you need a good, high-level overview of the ping utility, this is the book. I can't recommend it
for most managers, as the technical aspects may be too overwhelming and the basic concepts
too daunting.

As good as it is, The Story About Ping is not without its faults. There is no index, and though the
ping(8) man pages cover the command line options well enough, some review of them seems to
be in order. Likewise, in a book solely about Ping, I would have expected a more detailed
overview of the ICMP packet structure.

But even with these problems, The Story About Ping has earned a place on my bookshelf, right
between Stevens' Advanced Programming in the Unix Environment, and my dog-eared copy of
Dante's seminal work on MS Windows, Inferno. Who can read that passage on the Windows API
("Obscure, profound it was, and nebulous, So that by fixing on its depths my sight -- Nothing
whatever I discerned therein."), without shaking their head with deep understanding. But I
digress.

https://blog.codinghorror.com/the-story-about-ping/

https://blog.codinghorror.com/the-story-about-ping/

traceroute
• how did my

communication
get from here
to there

13

traceroute to google.ru (172.217.11.35), 30 hops max, 60 byte packets
 1 compsci-gw.brynmawr.edu (165.106.10.1) 1.382 ms 2.746 ms 2.782 ms
 2 gateway-router.brynmawr.edu (165.106.254.26) 0.390 ms 0.373 ms 0.356 ms
 3 204.238.76.61 (204.238.76.61) 1.262 ms 1.245 ms 1.228 ms
 4 204.238.76.235 (204.238.76.235) 1.616 ms 1.599 ms 1.631 ms
 5 lo-0.8.rtsw.newy32aoa.net.internet2.edu (64.57.21.235) 3.864 ms 3.847 ms 3.971 ms
 6 162.252.69.135 (162.252.69.135) 3.954 ms 3.997 ms 4.056 ms
 7 * 108.170.248.1 (108.170.248.1) 6.078 ms *
 8 108.170.248.33 (108.170.248.33) 4.978 ms 172.253.70.7 (172.253.70.7) 4.318 ms 108.170.237.206
(108.170.237.206) 4.452 ms
 9 lga25s61-in-f3.1e100.net (172.217.11.35) 4.216 ms 4.301 ms 172.253.69.219 (172.253.69.219) 4.458 ms
[gtowell@benz ~]> traceroute google.com
traceroute to google.com (172.217.10.142), 30 hops max, 60 byte packets
 1 compsci-gw.brynmawr.edu (165.106.10.1) 1.539 ms 1.554 ms 1.535 ms
 2 gateway-router.brynmawr.edu (165.106.254.26) 0.379 ms 0.363 ms 0.563 ms
 3 204.238.76.61 (204.238.76.61) 1.353 ms 1.336 ms 1.318 ms
 4 204.238.76.235 (204.238.76.235) 1.850 ms 1.832 ms 1.869 ms
 5 lo-0.8.rtsw.newy32aoa.net.internet2.edu (64.57.21.235) 4.136 ms 4.119 ms 4.102 ms
 6 162.252.69.135 (162.252.69.135) 4.085 ms 3.878 ms 3.937 ms
 7 108.170.248.33 (108.170.248.33) 4.785 ms * *
 8 142.250.46.194 (142.250.46.194) 5.465 ms 172.253.71.165 (172.253.71.165) 3.993 ms 142.250.235.236
(142.250.235.236) 5.489 ms
 9 172.253.71.165 (172.253.71.165) 3.999 ms 108.170.248.84 (108.170.248.84) 4.870 ms 172.253.71.165
(172.253.71.165) 3.908 ms
10 lga34s16-in-f14.1e100.net (172.217.10.142) 3.881 ms 3.900 ms 3.917 ms

Bits
• unsigned char val = 0;
• 00000000

• val = 1;
• 00000001

• val = 2;
• 00000010

• val = 4;
• 00000100

• etc

14

C (and Java) allow you to work
directly on bits
• <<, >>, |, &, ^, ~
• << and >>
• NOT related to <, >
• these “shift”. Multiply / divide by powers of 2

• |, & are related
• “bitwise or” and “bitwise and”

• ^, ~
• bitwise XOR and bitwise complement

15

| and &
• bit or
• 0001001 | 10001000 => 10011001
• 11110001 | 10101010 => 11111011
• if there is a 1 in a position in either, then 1 is in the result

• bit and
• 00010001 & 10001000 =>00000000
• 11110001 | 10101010 => 10100000
• if there is a 1 a position in BOTH, then 1 in result

• bit XOR (^) and complement follow

16

Bit Masks
• A quick way to select store and

transfer options. Used a lot,
especially in legacy programs

• Idea is to put all selected
options into single variable,
using bitwise OR
• Then evaluate using a “mask”

via bitwise &. Get true if a bit
in container is shared with
masker

17

//file: masker.c

#define OPTA 1
#define OPTB 2
#define OPTC 4
#define OPTD 8

char getUserSel() {
 char selectedOpts = 0;
 char c[100];
 while (1) {
 printf("Enter a letter: ");
 fgets(c, 99, stdin);
 switch (c[0]) {
 case 'a': case 'A':
 selectedOpts = selectedOpts | OPTA;
 break;
 case 'b': case 'B':
 selectedOpts |= OPTB;
 break;
 case 'c': case 'C':
 selectedOpts |= OPTC;
 break;
 case 'd': case 'D':
 selectedOpts |= OPTD;
 break;
 default:
 return selectedOpts;
 }
 }
}
int main(int argc, char const *argv[])
{
 char userSel = getUserSel();
 printf("%d %d %d\n", userSel, (OPTA | OPTB), (userSel & (OPTA | OPTB)));
 if (userSel & (OPTA | OPTB))
 printf("user selected A or B\n");
 if (userSel & (OPTA | OPTC | OPTD))
 printf("user selected A or C or D\n");
 return 0;
}

This will require examples

Bit Shifting
• << n

• equivalent to multiplying by that power of 2
• suppose

• unsigned char x = 16;
• 00010000

• x = x << 2;
• 01000000
• or x == 64

• >> n
• equivalent to dividing by that power of n

• x >>= 3;
• 00001000
• or x == 8

18

int main(int argc, char const *argv[])
{
 unsigned char uc = 0;
 uc = 1;
 for (int i = 0; i < 12; i++) {
 printf("Step:%2d UC:%6d\n", i, uc);
 //uc = uc << 1;
 uc <<= 1;
 }
 uc = 255;
 unsigned char uuc = uc;
 for (int i = 0; i < 10; i++)
 {
 printf("Down:%2d UC:%6d UUC:%6d\n",
 i, uc, uuc);
 uc >>= 2;
 uuc /= 4;
 }
}

Writing Bits into vars
• Simple math will do it as long as there are 0’s

• unsigned char x = 0;
• x = 1;

• 00000001
• x += 4

• 00000101 (5)
• But addition falls apart

• x+=4
• 00001001 (9)

• Need to use BIT operators
• x=0;
• x|=1; //00000001
• x|=4; //00000101
• x|=4; //00000101

19

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char const *argv[])
{
 unsigned char aa = 0;
 for (int i = 0; i < 8; i++)
 {
 if (argv[1][i] == '\0')
 break;
 aa <<= 1;
 if (argv[1][i] == '1')
 aa |= 1;
 }
 printf("%d\n", aa);
 return 0;
}

Reading bits
from vars
• Same idea, just reversed!

• Basic approach
• determine if there is a

1 in least significant bit
• yes: output 1
• no: output 0

• divide by 2
• Repeat

20

#include <stdio.h>
#include <stdlib.h>
void pbMATH(unsigned char xx, char rtn[]) {
 for (int i = 7; i >=0; i--)
 {
 rtn[i] = '0' + (xx % 2);
 //printf("bit num=%1d value=%1d\n", i, xx % 2);
 xx /= 2;
 }
}
void pbBITS(int xx, char rtn[]) {
for (int i = 7; i >=0; i--)
 {
 rtn[i] = '0' + (xx&1);
 //printf("bit num=%1d value=%1d\n", i, xx % 2);
 xx >>= 1;
 }
}
int main(int argc, char const *argv[])
{
 char aa[8];
 for (int i = 1; i < argc; i++)
 {
 pbMATH(atoi(argv[i]), aa);
 printf("BITS:%s\n", aa);
 pbBITS(atoi(argv[i]), aa);
 printf("BITS:%s\n", aa);
 }
 return 0;
}

Reading alternate
• Determine if there is a 2

in most significant
• output 1 or 0
• multiply by 2
• repeat

• Usually more convenient
to go this way

21

#include <stdio.h>
#include<stdlib.h>

void pbBITSUP(int xx, char rtn[]) {
 unsigned int val = 1 << ((8 * sizeof(int)) - 1);
 for (int i = 0; i < 8 * sizeof(int); i++)
 {
 rtn[i] = '0' + ((xx&val)?1:0);
 xx <<= 1; // shift bits to left
 }
}
int main(int argc, char const *argv[])
{
 char aa[8*sizeof(int)+1];
 aa[8 * sizeof(int) + 1] = '\0';
 aa[8 * sizeof(int)] = '\0';
 for (int i = 1; i < argc; i++)
 {
 pbBITSUP(atoi(argv[i]), aa);
 printf("BITS:%s\n", aa);
 }
 return 0;
}

Lab
• Write a program that can take 8, 3 bit numbers and output a string of 24 bits

• For example:
• a.out 0 1 2 3 4 5 6 7
• 000001010011100101110111

• (read each number as a char, then take only the 3 least significant bits from
the char)

• You can just accumulate the bits in a character string or write directly to stdout.

• For an additional complication (not required or even recommended)
• write the 8 3 bit numbers into 3 8 bit numbers and then output those numbers.

This will mean that some 3 bit number are represented across 2 8 bit numbers.

22

