
CS246
Unix:archive files

C:dynamic memory allocation
April 1

gzip
• unix standard compression utility
• gzip file
• gzip -c file > file.gz
• gzip < file > file.gz
• cat file | gzip > file.z
• 2 and 3 effectively the same
• 3 and 4 differ in ability to handle non-text files

• gunzip — decompress a gzip file
• -c as with gzip

2

tar
• “Tape ARchive”

• create a single file containing multiple files
• usage: tar flags tarfilename [listOfFiles]
• flags

• f — REQUIRED — work on files — almost always
• c or x REQUIRED

• create make a new tar file
• extract pull files out of an existing tar archive

• do not need listOfFiles
• z OPTIONAL

• use gzip/gunzip to [un]compress the tar archive
• tar fcz homework4.tar.gz Homework4/

• put (and compress) the entire contents of the Homework4 directory into a file named homework4.tar.gz.
• by convention tar files have a .tar extension
• by convention compressed tar files have .tar.gz extension

• tar fxz homework4.tar.gz
• extract the files from the named file. This will create directories as needed.

• Starting with HW6, you will no longer be using the submit script. Rather
• create a compressed tar file for your work.
• copy it to a writable directory of mine
• set permissions so I can read.
• will be documented in A6

3

tr and the Ceasar cypher
• Ceasar cypher is one of the oldest known forms of encryption
• “substitute”
• Simplest form is rotN
• that is shift letters by N positions

• a classic is ROT13

• tr can do this!!!! (or any caesar cypher)
• tr a-z n-za-m

4

* in C

5

int	i;	//i	is	an	int.	
int	*i;	//i	is	a	pointer	to	an	int	
int	**i;//i	is	a	pointer	to	a	pointer	to	an	int.	

int	i	=	10;	//i	is	an	int,	it	has	allocated	storage	to	store	an	int.	
int	*k;	//	k	is	an	uninitialized	pointer	to	an	int.		
								//It	does	not	store	an	int,	but	a	pointer	to	one.	
k	=	&i;	//	make	k	point	to	i.	We	take	the	address	of	i	and	store	it	in	k	
int	j	=	*k;	//here	we	dereference	the	k	pointer	to	get	at	the	int	value	it	points	
												//to.	As	it	points	to	i,	*k	will	get	the	value	10	and	store	it	in	j	

int	*ap[N];	
int	x	=	*ap[i];	//	parsed	as	*(ap[i]),	since	subscript	has	higher	precedence	
												//	than	dereference.	

int	**pp;	
int	xx	=	**p;	

int*	a[3] // a is an array of 3 pointers to int
int	(*a)[3] //a is a pointer to an array of 3 ints

* and **
• In declarations
• * indicates a pointer to

a particular type
• ** indicates a pointer to

a pointer to the type.
• This is NOT a 2d array
• char *aa[]
• similar to char **

6

int main(int argc, char const *argv[])
{
 char aa[5][5];
 char *bb[5];

 char **aadp = (char **)aa;
 char *aasp = (char *)aa;

 printf("AAA %d %d %d\n", aa, aadp, aasp);
 aadp++;
 aasp++;
 printf("BBB %d %d %d\n", aa, aadp, aasp);
 return 0;
}

AAA -1323584656 -1323584656 -1323584656
BBB -1323584656 -1323584648 -1323584655

Hashtables

7

int getHT(int htSize, int* vsp, char* ksp, int hv,
int v, char* ky) {
 int try = hv;
 int wrap = 0;
 while (wrap==0 || try != hv) {
 char* aksp = ksp + (MAX_KEY * try);
 int * avsp = vsp + try;
 if (*aksp == '\0') { return -1; }
 if (strcmp(aksp, ky)==0) {
 return *avsp;
 }
 // otherwise tombstone or different key
 try++;
 if (try>=htSize) {
 try=0;
 wrap=1;
 }
 }
 return -1;
}

int getHT(int htSize, int vs[htSize], char
ks[htSize][20], int hv, int v, char* ky) {
 int try = hv;
 int wrap = 0;
 while (wrap==0 || try != hv) {
 if (ks[try][0] == '\0') { return -1; }
 if (strcmp(ks[try], ky)==0) {
 return vs[try];
 }
 // otherwise tombstone or different
key
 try++;
 if (try>=htSize) {
 try=0;
 wrap=1;
 }
 }
 return -1;
}

very inefficient
but easy & safe

static memory allocation in C
• static allocation can waste space.

• char array[20];
• Consider the file at right

• At least half of the space in a statically allocated char
array to hold this would be unused
• char arrow[16][9];
• and that assumes you know the number of lines

• reader0.c
• standard 2d array

• reader0b.c
• char* arrow[16];
• An array of pointers to characters

8

0
01
012
0123
01234
012345
0123456
01234567
0123456
012345
01234
0123
012
01
0

Dynamic memory allocation
• reader0b.c does not work because there is one

string and all array references are set to it.
• need to different string for every line read
• had this with static allocation

• char* a[MAX_LINES];
• This allocates room for MAX_LINES pointers to

characters.
• It does not allocate any space for actual

characters!!!

• malloc
• void * malloc(size_t size);
• dynamically allocate a block of memory of the

size requested (or larger).
• memory is allocated from heap!

9

 file: reader1.c

 char* a[MAX_LINES];
 while (fgets(line, MAX_LINES/2+1, f)) {
 int llen = strlen(line);
 char* nline = malloc((llen+1)*sizeof(char));
 if (nline==NULL) {
 fprintf(stderr, "Malloc failed");
 }
 strcpy(nline, line);
 //printf(nline);
 a[linecount++]=nline;
 }

malloc should always have
this form. I.e.,

(# of things) * sizeof(thing)

free()
• The free command undoes malloc
• Memory is freed when program ends
• For this class, I do not care that program termination does

free
• Anything you malloc you must free
• If valgrind reports there is a memory leak, you must close it
• more generally, if valgrind suggests there is ANY issue

with your code, that issue must be resolved.

10

Everything that is malloc’d must be freed
• valgrind again

• tells you exactly how
much memory was
“lost” and where that
memory was allocated.

• The Java Garbage
Collector
• does not exist in C

• free
• “if you malloc you must

free”

11

[gtowell@powerpuff L12]$ gcc -g reader1.c
[gtowell@powerpuff L12]$ valgrind --leak-check=full --track-origins=yes a.out aaa.txt
==789272==
==789272== HEAP SUMMARY:
==789272== in use at exit: 567 bytes in 17 blocks
==789272== total heap usage: 19 allocs, 2 frees, 9,783 bytes allocated
==789272==
==789272== 95 bytes in 16 blocks are definitely lost in loss record 1 of 2
==789272== at 0x483977F: malloc (vg_replace_malloc.c:309)
==789272== by 0x1092BE: main (reader1.c:34)
==789272==
==789272== LEAK SUMMARY:
==789272== definitely lost: 95 bytes in 16 blocks
==789272== indirectly lost: 0 bytes in 0 blocks
==789272== possibly lost: 0 bytes in 0 blocks
==789272== still reachable: 472 bytes in 1 blocks
==789272== suppressed: 0 bytes in 0 blocks

Everything opened must be closed
• every malloc should be

free’d
• every fopen should be

fclose’d
• Valgrind again
• 0, 1 and 2 are stdout,

stderr and stdin.
These can be left open

12

[gtowell@powerpuff L12]$ gcc -g reader1a.c
[gtowell@powerpuff L12]$ valgrind --leak-check=full --show-
leak-kinds=all --track-fds=yes a.out aaa.txt

==1163638== FILE DESCRIPTORS: 4 open at exit.
==1163638== Open file descriptor 3: aaa.txt
==1163638== at 0x497422B: open (in /usr/lib/libc-2.31.so)
==1163638== by 0x4905CE5: _IO_file_open (in /usr/lib/
libc-2.31.so)
==1163638== by 0x4905EA0: _IO_file_fopen@@GLIBC_2.2.5
(in /usr/lib/libc-2.31.so)
==1163638== by 0x48F96CC: __fopen_internal (in /usr/lib/
libc-2.31.so)
==1163638== by 0x1091EC: main (reader1.c:21)
==1163638==
==1163638== Open file descriptor 2: /dev/pts/4
==1163638== <inherited from parent>
==1163638==
==1163638== Open file descriptor 1: /dev/pts/4
==1163638== <inherited from parent>
==1163638==
==1163638== Open file descriptor 0: /dev/pts/4
==1163638== <inherited from parent>

 for (int i=0; i<linecount; i++)
 free(a[i]);

free/close

13

file: reader2.c

 int linecount=0;
 while (fgets(line, 256, f)) {
 int llen = strlen(line);
 char* nline = malloc((llen+1)*sizeof(char));
 strcpy(nline, line);
 a[linecount++]=nline;
 }

 for (int i=0; i<linecount; i++)
 printf(a[i]);

 for (int i=0; i<linecount; i++)
 free(a[i]);
 fclose(f);
 fclose(stdin);
 fclose(stdout);
 fclose(stderr);

every malloc is freed

opened file
descriptors are closed

These are also open
file descriptors

functions and malloc
• Doing a big cheat — reading file twice
• Because malloc is in heap space

anything malloc’d can be returned
from a function
• GAGGH

• char** — a pointer to the start of
an array of pointers to characters
• ie a 2 dimensional array of

characters (sort of)
• So dynamically allocate an array that

will hold pointers
• then later dynamically allocate each

of the things pointed to by that array

14

int linecounter(char* filename) {
 FILE* f = fopen(filename, "r");
 char line[256];
 int linecount=0;
 while (fgets(line, 256, f)) linecount++;
 fclose(f);
 return linecount;
}
char** readfile(char* filename, int linecount) {
 char** rtn = malloc(linecount * sizeof(char*));
 int lc=0;
 FILE* f = fopen(filename, "r");
 char line[256];
 while (fgets(line, 256, f)) {
 int llen = strlen(line);
 char* nline = malloc((llen+1)*sizeof(char));
 strcpy(nline, line);
 rtn[lc++]=nline;
 }
 fclose(f);
 return rtn;
}

char[][] array vs char**

15

char[][]
char**

really just a long line

putting it all together
• Reading the text file into

minimal space
• does require 2 reads of

the the file
• could pipe wc but that would

still read the entire file.

• Note. Since the array and its
contents were all malloc’d,
they must all be free’d.
• be sure to free contents

before freeing array.

16

int main(int argc, char* argv[]) {

 FILE* f = fopen(argv[1], "r");
 if (!f) {
 fprintf(stderr, "No such file\n");
 return 1;
 }
 fclose(f);

 int linecount = linecounter(argv[1]);
 char** text = readfile(argv[1], linecount);
 for (int i=0; i<linecount; i++)
 printf(text[i]);

 for (int i=0; i<linecount; i++)
 free(text[i]);
 free(text);

 fclose(stdin);
 fclose(stdout);
 fclose(stderr);
}

Applying all of this to Weather
• Core idea
• for every struct have a constructor and destructor
• constructor allocates space
• destructor frees

• Always use constructor to get struct
• That way the destructor can always work.

17

Weather wind

18

file wwind.h

typedef struct {
 char * direction;
 int speed;
 char * scale;
} Wind;

Wind* makeWind(char* dir, int sp,
char* scl);
void freeWind(Wind* wnd);

#include "wutil.h"
#include "wwind.h"
#include <stdlib.h>

Wind* makeWind(char* dir, int sp, char* scl) {
 Wind *rtn = malloc(sizeof(Wind));
 rtn->direction = strmcopy(dir);
 rtn->speed = sp;
 rtn->scale = strmcopy(scl);
 return rtn;
}

void freeWind(Wind* wnd) {
 free(wnd->direction);
 free(wnd->scale);
 free(wnd);
}

Constructor

Destructor

utility functions
• Used by

multiple .c files.
• I usually put

these into files
named util.[ch]

19

file: wutil.c

#include <string.h>
#include <stdlib.h>

/**
 * Create a copy of the provided string in a newly malloc'd
 * block of memory. The block is exactly the size needed for
 * the copy. THIS MUST BE FREED
 * @param scr -- the string to be copied
 * @return a pointer to the new copy
 * **/
char* strmcopy(char* src) {
 char* newstr = malloc((strlen(src)+1)*sizeof(char));
 strcpy(newstr, src);
 return newstr;
}

Weather
• Chose to malloc the space

for weather here
• so I will free it all here too

20

file: wweather.h

#define MAIN_ARRAY 1
typedef struct {
 Time * time;
 Temperature * temperature;
 Temperature * dewPoint;
 int relHum;
 Wind * wind;
} WeatherData;
extern WeatherData ** weather;
void wprinter(WeatherData *w);
int readFile(char *fileName);
void freeAllWeather();

int wcount = 0; // PRIVATE VARIABLE!!!

void wprinter(WeatherData* w) { //unchanged
}
WeatherData* parse(char* line) { //PRIVATE METHOD
 WeatherData *ret = malloc(sizeof(WeatherData));
 char *c = strtok(line, " \t");
 char *c2 = strtok(NULL, " \t");
 ret->time = makeTime(c, c2);
 c = strtok(NULL, " \t");
 c2 = strtok(NULL, " \t");
 ret->temperature = makeTemperature(atoi(c), c2);
 c = strtok(NULL, " \t");
 c2 = strtok(NULL, " \t");
 ret->dewPoint = makeTemperature(atoi(c), c2);
 c = strtok(NULL, " \t");
 ret->relHum = atoi(c);
 c = strtok(NULL, " \t");
 c2 = strtok(NULL, " \t");
 char *c3 = strtok(NULL, "\t");
 ret->wind = makeWind(c, atoi(c2), c3);
 return ret;

More Weather
• First step — allocate

space for array of
POINTERs to weather
objects
• not the objects

themselves
• Note use of conditional

compilation!!!
• if MAIN_ARRAY is

defined, use array
notation for working
with the weather
array.
• Else do it with

pointers
21

int readFile(char* fileName) {
 weather = malloc(200 * sizeof(WeatherData *));
 char line[256];
 FILE *f = fopen(fileName, "r");
 if (f==NULL) {
 fprintf(stderr, "Could not open %s -- quitting\n", fileName);
 return -1;
 }
 #ifndef MAIN_ARRAY
 WeatherData **cWeather = weather;
 #endif
 wcount = 0;
 while (NULL != fgets(line, 256, f)) {
 if (strlen(line)>0) {
 #ifdef MAIN_ARRAY
 weather[wcount] = parse(line);
 #else
 *cWeather = parse(line);
 cWeather++;
 #endif
 wcount++;
 }}
 fclose(f);
 return wcount;
}

Cleaning up weather
• freeAllWeather is public
• freeing order is

important.
• Always free

everything within a
[struct or array]
before freeing the
thing itself!!!

• Use the destructors you
defined.
• VERY java-like

22

void freeWeather(WeatherData * ww) {
 freeTime(ww->time);
 freeTemperature(ww->temperature);
 freeTemperature(ww->dewPoint);
 freeWind(ww->wind);
 free(ww);
}

void freeAllWeather() {
 for (int i = 0; i < wcount; i++) {
 freeWeather(weather[i]);
 }
 free(weather);
}

Lab
• Create a struct that defines students at Bryn Mawr (very

briefly).
• The struct must have at least 2 “strings” and two integers.
• The integers should be stored in the struct as integers

(not pointers to integers).
• The strings should be dynamically allocated at runtime to

contain as little space as possible.
• Write a constructor and destructor for this struct.
• You may not use the strmcpy function from class today.

23

